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The density matrix formalism developed here pro- 
vides a general extension of the usual Waller-Hartree 
equations and therefore facilitates a study of the 
importance of effects other than electron exchange; 
that is, we are in a favorable position to assess the 
importance of electron correlation on X-ray scattering. 
This topic is treated in the next paper where we compare 
coherent and total intensity values obtained for the Be 
atom from the NSO and NSG analysis of a configura- 
tion interaction (CI) function, and from a two-con- 
figuration function, with those computed within the 
Waller-Hartree formalism from a HF function. 
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In order to assess the importance of correlation effects with respect to the Hartree-Fock (HF) results, 
values of the coherent, total and incoherent scattered X-ray intensities were computed for the 1S ground 
state of atomic beryllium. Natural spin orbitals (NSO) and natural spin geminals (NSG) constructed 
from the accurate configuration interaction (CI) wavefunction of A.W. Weiss were used in the evalua- 
tion of these X-ray quantities from previously derived density matrix expressions. Values were also 
computed from the two-configuration wavefunction of Watson, which accounts for the 2s-2p near 
degeneracy effect. As expected, the CI results for the total intensity differ from their HF counterparts but 
the magnitudes of the absolute deviations are not as large as those observed for the coherent intensity 
values. Although the HF results for the coherent intensity are in reasonably good agreement with the CI 
values, conclusions based on the Moller-Plesset theorem must be made with caution. The largest per- 
centage deviations between HF and CI results, however, are observed for the incoherent intensity. All 
calculations reported here were verified by the use of sum rules. 

1. Introduction 

In this paper we examine the effects of electron corre- 
lation on the coherent, incoherent and total intensities 
(the sum of the Compton and Rayleigh contributions) 
of scattered X-ray radiation. Total intensity values 
computed from Hartree-Fock (HF) wavefunctions are 
expected to be somewhat erroneous since an indepen- 
dent particle model (IPM) description of the atom 
assumes that the spatial coordinates of each electron 
are in fact independent of the spatial coordinates of 

the remaining electrons. This neglect of the so-called 
'Coulomb holes' associated with electron pairs can 
lead to errors when evaluating the total intensity ex- 
pression since the scattering operator contains the 
inter-electron distances r~j=ri-r~.  These coulombic 
manifestations of correlation must not be confused 
with exchange effects since exchange terms, which do 
enter the IPM (Waller-Hartree, 1929) expression for 
the total scattered intensity, owe their existence only 
to the antisymmetric behaviour of the HF wavefunc- 
tion. Thus antisymmetry leads to an exchange corre- 
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lation between electrons of like spin - the so-called 
'Fermi hole' discussed by L6wdin (1959). 

With respect to the accuracy of coherent X-ray 
scattering factors computed from HF wavefunctions, 
reference can be made to the Moller-Plesset (1934) 
theorem* which states that these quantities must be 
accurate to second order (in the sense of a perturbation 
treatment) since they are expectation values of an one- 
electron operator. However, the coherent scattering 
factor F(la) is related to the Fourier transform of the 
charge density matrix ~(r) and this function may not 
be represented equally well in all regions of space 
within the HF approximation. This means, of course, 
that the accuracy of HF form factors is a function of 
the scattering variable. 

In the next section we use a density matrix formalism 
derived in the preceding paper (Benesch & Smith 
(1970), hereafter referred to as I) to obtain 'accurate' 
correlated values of the coherent, incoherent and total 
scattered X-ray intensities for the ~S ground state of 
atomic Be. The natural spin orbitals (NSO) and natu- 
ral spin geminals (NSG) used in the present calcula- 
tions are those obtained by Barnett & Shull (1967) 

* See Nesbet (1965) for the extension of this theorem to 
non-closed shell systems. 
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Fig. 1. Intensity differences for total scattering for the ~S state 
of the Be atom. 
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Fig.2. Intensity differences for coherent scattering for the 1S 
state of the Be atom. 

from the accurate (93.06 % of the correlation energy, 
55 configurations) configuration interaction (CI) func- 
tion of A. Weiss W. (Weiss, 1961). Values were also ob- 
tained from Watson's (1961)two-configuration wave- 
function (46.07 % of the correlation energy) and from 
Clementi's (1965) analytical HF function (0% of the 
correlation energy). 

2. Results 

Values of the coherent Ic, incoherent I~ and total It 
intensities of scattered X-ray radiation computed from 
the three wavefunctions mentioned above are pre- 
sented in Table 1 at various intervals of sin (co/2)/2, in 
A -1. For a 1S state the ]scattering variable la=2nlS[ 
depends only on the magnitude of the scattering vector 
S and not on its direction. For purposes of illustration 
the various differences in total intensity Air(#) are 
plotted versus sin (a#2)/2 in Fig. 1. Fig. 2 displays the 
coherent intensity differences A/e(#). To zero order 
in the incident X-ray energy, the correlated values for 
Ii(#) were obtained by subtracting the coherent from 
the total intensity values. 

A few remarks regarding the present computations 
are in order. The HF results (Benesch, 1967; Tavard, 
Nicholas & Roualt, 1967) were obtained by evaluating 
the Waller-Hartree (1929) expressions for /e(#) and 
I~(#). Watson's (1961) two-configuration function, 
which takes into account the effects of the near degen- 
eracy of 2s and 2p orbitals (Linderberg & Shull, 
1960; Layzer, 1959) is written as 

glg = a gJl -b b gJ2 , (1) 

where a and b are optimized mixing parameters and 
a2+b2= 1. The functions ~1, 7'2 have the definitions 

~1 =[lsc~ (1) lsfl (2) 2s0¢ (3) 2sfl (4)], (2a) '{ ~u2= - ~  [lsc~ (1) lsfl (2) 2p+0c (3) 2p-fl (4)] 

+[ l s~  (1) lsfl (2) 2p_~ (3) 2p+fl (4) 

- [ls~. (1) lsfl (2) 2p0c~ (3) 2pofl (4)]} (2b) 

where the bracket notation [] indicates a normalized 
Slater determinant constructed from the orthonormal 
atomic orbitals ls,2s, and 2p+,2p-,2po. The atomic or- 
bitals are expanded in a Slater-type orbital (STO) basis 
{¢j(r)}; the + ,  - ,  0 subscripts refer to the z component 
(mz quantum number) of angular momentum for the 
threefold degenerate 2p orbitals. With Watson's ~S 
state wavefunction the expressions for the coherent and 
total scattered X-ray intensities are easily shown to be 

Ie/lel = ]2flsls + 2a2f2s2s + 2b2f2p(o)2v] 2 , 

I , / I c , =  2 2 2a ]fil ls + 4 f  l s l s f  2s2s + f~s2~- 2 f~2~] 

- 4 a b  1/3 f2~o)2p 

4- 2bZ[f2sl s -b 4 f  l s ls f  2p(o)2 v +f22p(o)zp -b 2fgp(2)2p 

- 2fLcl~]  + 4 .  

(3a) 

(3b) 
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T h e  m a t r i x  e l e m e n t s  a p p e a r i n g  in  (3a) a n d  (3b) a re  
s imi l a r  to  t h o s e  de f ined  by  e q u a t i o n  (24e) o f  I. T h e  
subsc r ip t s  s, p de f ine  t he  va lues  o f  t he  a n g u l a r  m o m e n -  
t u m  q u a n t u m  m u m b e r s  1~, lz o f  the  two  a t o m i c  o rb i t a l s  

i n v o l v e d  in the  p a r t i c u l a r  m a t r i x  e l e m e n t  wh i l e  t he  
b r a c k e t e d  s u b s c r i p t  re fers  to  the  o r d e r  p o f  t he  spher-  
ical  Bessel  f u n c t i o n ,  lll-121<p<ll+12. Since  e a c h  
a t o m i c  o rb i t a l  is e x p a n d e d  ove r  a S T O  basis  {~0~(r)}, 

T a b l e  1. Total" coherent and incoherent scattered 

K* ha(p) hb(p) I~c(U) ~a(p) 
0"000 16"0004 16"00000 15"99972 16"0005 
0"005 15"9813 15"98043 15"98017 15"9750 
0"010 15"9242 15"92199 15"92178 15"8989 
0"015 15"8298 15"82550 15"82535 15"7733 
0"020 15"6996 15"69226 15"69218 15"6002 
0"025 15"5351  15"52408 15"52403 15"3819 
0"030 15"3385 15'32319 15"32312 15"1217 
0"035 15"1124 15"09217 15"09200 14"8232 
0"040 14"8595 14"83393 14"83355 14"4904 
0"045 14"5828 14"55160 14"55087 14"1277 
0"050 14"2855 14"24847 14"24723 13"7395 
0"055 13"9708 13"92793 13"92601 13"3304 
0"060 13"6420 13"59335 13"59058 12"9050 
0"065 13"3023 13"24810 13"24430 12"4678 
0"070 12"9548 12"89540 12"8904l 12"0229 
0"075 12"6024 12"53833 12"53201 11"5745 
0"080 12"2480 12"17977 12"17200 11"1262 
0"085 11"8942 11"82236 11"81306 10"6813 
0"090 11"543l 11"46848 11"45761 10"2428 
0"095 11"1970 11"12026 11"10780 9"8132 
0"100 10"8576 10"77952 10"76551  9"3948 
0"105 10"5264 10"44783 10"43234 8"9893 
0"110 10"2049 10"12648 10"10961  8"5982 
0"115 9"8940 9"81651 9"79841 8"2227 
0"120 9"5946 9"51872 9"49954 7"8634 
0"125 9"3074 9"23368 9"21361 7"5209 
0"130 9"0328 8"96177 8"94101 7"1956 
0"135 8 " 7 7 1 1  8"70319 8"68195 6"8873 
0"140 8"5224 8-45800 8'43648 6"5961 
0"145 8"2867 8-22610 8"20451 6"3216 
0"150 8"0639 8"00730 7"98584 6"0635 
0"155 7"8538 7-80131 7"78015 5"8211 
0"160 7"6560 7"60777 7"58709 5"5939 
0"165 7"4704 7"42626 7"40619 5"3813 
0"170 7"2963 7"25631 7"23699 5"1826 
0"175 7"1335 7"09745 7"07896 4"9971 
0"180 6"9813 6"94914 6"93157 4"8240 
0"185 6"8395 6"81087 6"79426 4"6627 
0"190 6"7073 6"68211 6"66649 4"5124 
0"195 6"5843 6"56233 6"54771 4"3724 
0"200 6"4701 6"45102 6"43738 4"2421 
0"205 6"3641 6"34766 6"33499 4"1207 
0"210 6"2658 6"25178 6"24001 4"0077 
0"215 6"1748 6"16288 6"15198 3"9025 
0"220 6"0906 6"08052 6"07041 3"8045 
0"225 6"0126 6"00427 5"99487 3"7131 
0"230 5"9406 5"93369 5"92492 3"6279 
0"235 5 " 8 7 4 1  5"86841 5"86018 3"5483 
0"240 5"8127 5"80804 5"80027 3"4740 
0"245 5"7560 5"75222 5"74482 3"4045 
0"250 5"7037 5"70062 5"69350 3"3395 
0"255 5"6555 5-65293 5"64599 3"2784 
0"260 5"6110 5"60884 5"60201 3"2211 
0"265 5"5699 5"56808 5"56127 3"1672 
0"270 5"5320 5"53038 5"52352 3"1164 
0"275 5"4969 5"49549 5"48851 3"0685 
0"280 5"4646 5"46319 5"45602 3"0231 
0"285 5"4346 5"43327 5"42584 2"980I 
0"290 5"4069 5"40551 5"39777 2"9393 
0"295 5"3812 5"37973 5"37163 2"9004 
0"300 5"3574 5"35577 5"34725 2"8632 
0"310 5"3145 5"31262 5"30317 2"7936 
0"320 5"2772 5"27490 5"26439 2"7292 

X-ray intensities for the Be atom in the ground state (1S). 

16"00009 16"00001 - 0"0001 0"00000 -0"00028 
15.97606 15.97597 0.0062 0"00437 0-00420 
15-90459 15"90420 0-0252 0.01740 0"01758 
15-78656 15"7856S 0"0565 0"03893 0"03967 
15-62360 15.62204 0.0994 0.06866 0"07014 
15"41789 15"41549 0"1532 0-10619 0"10855 
15"17216 15"16877 0"2168 0"15103 0"15435 
14"88956 14"88506 0"2892 0-20261 0"20694 
14"57366 14"56795 0"3691 0"26027 0-26559 
14"22826 14-22129 0"4551 0"32334 0"32958 
13-85740 13-84912 0"5460 0"39107 0"39811 
13"46520 13"45561  0"6404 0-46272 0"47040 
13"05581 13"04494 0"7370 0"53754 0"54564 
12"63332 12"62123 0"8345 0"61478 0"62307 
12"20168 12"18847 0"9318 0"69372 0"70194 
11"76467 11"75045 1"0279 0"77366 0"78157 
11"32580 11"31071 1"1219 0-85397 0-86130 
10"88832 10"87251  1-2129 0.93404 0"94055 
10"45515 10"43880 1"3004 1-01333 1"01881 
10.02889 10"01218 1"3838 1"09137 1.09562 
9"61180 9"59492 1"4628 1-16772 1"17059 
9"20581 9"18894 1 " 5 3 7 1  1"24202 1-24340 
8"81250 8"79583 1"6066 1-31399 1"31379 
8"43315 8"41685 1 " 6 7 1 3  1"38336 1"38155 
8"06875 8.05299 1"7312 1"44997 1"44655 
7-72001 7"70493 1 " 7 8 6 5  1.51368 1-50868 
7"38738 7"37312 1"8372 1"57439 1"56789 
7"07112 7"05780 1"8838 1-63208 1"62415 
6"77127 6"75898 1 " 9 2 6 3  1"68673 1"67750 
6"48771 6-47654 1 " 9 6 5 1  1-73838 1"72797 
6-22020 6"21019 2-0004 1.78710 1-77564 
5"96835 5"95956 2"0327 1"83296 1"82060 
5"73169 5"72414 2 " 0 6 2 1  1-87607 1"86295 
5"50969 5"50339 2.0890 1-91657 1-90280 
5"30175 5"29670 2"1137 1"95457 1.94029 
5"10723 5"10341 2-1364 1"99022 1"97555 
4"92546 4"92285 2"1573 2-02368 2"00872 
4"75578 4-75433 2"1767 2"05509 2"03993 
4"59750 4"59717 2"1949 2.08461 2"06932 
4-44995 4"45069 2"2119 2"11238 2"09702 
4"31247 4-31421 2 " 2 2 8 1  2"13855 2-12317 
4"18440 4"18708 2-2434 2"16326 2-14790 
4"06512 4"06868 2 " 2 5 8 1  2"18666 2"17133 
3-95403 3"95840 2"2723 2"20886 2"19358 
3"85054 3"85565 2 " 2 8 6 1  2-22998 2-21476 
3"75412 3"75990 2"2995 2-25015 2"23497 
3"66423 3-67061 2"3128 2"26946 2-25431 
3"58039 3"58730 2"3258 2-28802 2-27288 
3"50212 3"50950 2"3387 2"30591 2-29076 
3.42900 3"43679 2"3515 2-32321 2"30803 
3"36061 3"36874 2"3643 2"34001 2"32476 
3"29657 3"30498 2-3770 2"35635 2-34101 
3"23653 3"24515 2"3898 2"37231 2"35685 
3"18013 3"18893 2"4026 2"38794 2"37234 
3"12709 3"13601 2"4155 2"40329 2-38751 
3"07710 3-08610 2-4284 2"41839 2"40241 
3"02990 3"03894 2-4414 2"43329 2-41708 
2"98525 2"99428 2-4545 2"44802 2-43156 
2"94290 2.95190 2"4676 2"46261 2"44587 
2"90266 2"91158 2"4809 2"47707 2"46004 
2"86433 2"87315 2"4942 2-49144 2-47410 
2"79267 2.80121 2"5210 2"51995 2"50195 
2"72665 2"73485 2"5480 2"54825 2"52955 
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T a b l e  1 (cont.) 

0"330 5"2443 5"24162 5"22997 2"6690 2"66521 2"67299 2"5753 2"57641 2"55697 
0"340 5"2150 5"21192 5"19907 2.6122 2"60743 2-61478 2"6028 2"60449 2"58429 
0"350 5"1885 5"18510 5"17100 2"5581 2"55258 2"55946 2"6304 2"63251 2"61154 
0"360 5"1643 5"16053 5"14518 2"5061 2-50004 2"50645 2"6581 2"66049 2"63873 
0"370 5"1418 5"13772 5.12113 2"4558 2-44930 2"45525 2"6859 2"68842 2"66588 
0"380 5-1205 5.11624 5"09844 2.4068 2"39995 2"40545 2"7137 2"71630 2"69298 
0"390 5"1003 5"09576 5"07676 2"3588 2"35166 2"35674 2"7415 2"74411 2"72002 
0"400 5"0807 5"07600 5"05585 2"3115 2"30417 2"30886 2-7692 2"77183 2-74699 
0"410 5"0616 5-05673 5"03547 2"2648 2"25728 2"26161 2"7968 2"79945 2"77385 
0.420 5"0428 5"03777 5"01545 2"2184 2-21084 2"21485 2"8243 2"82693 2"80060 
0-430 5-0241 5.01900 4"99566 2.1724 2"16474 2-16846 2.8517 2"85426 2"82721 
0.440 5"0055 5"00031 4"97601 2.1266 2"11889 2"12236 2"8789 2"88141 2"85365 
0"450 4"9868 4"98162 4"95641 2"0810 2"07326 2"07650 2-9058 2"90836 2"87991 
0"460 4"9681 4"96289 4"93682 2"0356 2"02781 2"03085 2"9326 2"93509 2"90596 
0"470 4-9494 4"94409 4"91720 1"9903 1"98253 1"98541 2"9590 2"96156 2"93179 
0"480 4"9305 4"92519 4"89753 1'9452 1-93742 1"94017 2"9852 2"98777 2"95736 
0-490 4"9115 4"90620 4"87781 1"9003 1"89252 1-89515 3-0112 3"01368 2"98266 
0"500 4"8924 4"88712 4"85805 1"8556 1"84783 1"85038 3"0367 3"03929 3"00767 
0"510 4.8732 4"86796 4"83825 1-8112 1"80339 1"80587 3"0620 3"06456 3"03238 
0"520 4"8539 4"84874 4"81843 1"7670 1"75924 1"76166 3"0869 3"08950 3"05677 
0-530 4"8346 4"82949 4"79862 1 " 7 2 3 1  1"71542 1'71779 3"1115 3"11407 3"08083 
0.540 4"8153 4.81023 4"77883 1"6796 1"67195 1"67430 3"1357 3-13827 3'10454 
0"550 4"7960 4"79099 4"75910 1"6365 1"62890 1-63121 3-1595 3-16209 3-12788 
0"560 4"7767 4"77179 4"73944 1"5938 1-58629 1"58858 3"1829 3"18550 3"15086 
0"570 4"7575 4"75267 4"71990 1"5516 1"54416 1-54644 3"2059 3"20851 3"17345 
0"580 4"7384 4"73365 4"70048 l '5100 1"50255 1"50482 3"2285 3"23110 3"19566 
0"590 4"7195 4"71476 4"68123 1"4688 1"46149 1"46376 3"2506 3"25327 3"21747 
0"600 4"7007 4"69603 4"66216 1"4283 1"42103 1"42329 3-2724 3"27500 3"23837 
0'620 4"6636 4"65913 4"62467 1"3491 1"34198 1"34423 3"3145 3"31715 3"28045 
0"640 4"6274 4.62312 4"58819 1"2725 1"26560 1"26783 3"3549 3"35752 3"32036 
0"660 4"5922 4"58816 4-55286 1"1987 1"19207 1"19427 3-3935 3"39609 3"35858 
0"680 4"5583 4"55436 4"51879 1"1279 1-12151 1"12367 3-4303 3"43286 3"39512 
0.700 4"5255 4"52182 4"48608 1.0602 1"05399 1"05610 3"4654 3"46783 3"42997 
0-720 4"494l 4"49060 4.45478 0"9955 0"98956 0"99162 3"4986 3"50105 3"46316 
0-740 4"4641 4"46076 4"42495 0"9339 0"92823 0"93023 3"5302 3"53252 3"49472 
0.760 4.4354 4.43230 4"39659 0"8754 0"87000 0"87192 3"5600 3"56230 3"52467 
0.780 4"4082 4"40524 4-36972 0"8199 0.81481 0"81666 3"5883 3"59043 3"55307 
0.800 4"3824 4"37958 4"34432 0"7675 0"76262 0-76438 3"6149 3"61696 3"57994 
0.820 4"3579 4"35529 4"32037 0 7179 0"71334 0"71502 3"6400 3"64195 3"60536 
0"840 4"3348 4.33235 4"29784 0"6712 0"66688 0"66848 3"6636 3"66547 3"62936 
0.860 4"3130 4.31071 4"27667 0"6272 0"62316 0"62467 3"6858 3"68756 3"65201 
0.880 4.2925 4.29034 4.25683 0'5859 0"58205 0"58348 3"7066 3-70829 3-67335 
0"900 4"2732 4"27119 4"23827 0"5471 0"54346 0-54481 3'7261 3"72774 3"69346 
0"920 4.2551 4"25321 4-22091 0"5106 0"50726 0"50853 3"7444 3"74596 3"71238 
0"940 4"2381 4.23635 4"20472 0"4765 0"47334 0"47454 3"7616 3"76301 3'73018 
0.960 4"2222 4"22055 4.18962 0"4446 0"44159 0"44272 3"7776 3"77896 3"74690 
0.980 4"2073 4"20575 4.17557 0"4147 0"41189 0"41295 3"7926 3"79387 3"76261 
1"000 4"1933 4.19192 4"16250 0"3867 0-38412 0"38513 3"8066 3"80780 3"77737 
1"100 4-1363 4"13531 4.10991 0"2725 0'27067 0"27142 3"8638 3"86465 3"83849 
1"200 4"0961 4'09542 4-07407 0"1921 0"19082 0"19139 3"9040 3"90460 3"88267 
1.300 4"0680 4"06748 4.04988 0.1358 0.13493 0"13539 3-9321 3"93255 3"91449 
1"400 4.0483 4.04795 4.03364 0"0965 0"09588 0"09624 3"9518 3"95207 3"93741 
1"500 4"0345 4"03428 4"02276 0"0690 0"06854 0.06882 3"9655 3"96574 3"95394 
1.600 4"0248 4"02467 4"01545 0"0497 0'04933 0-04956 3"9752 3"97534 3"96590 
1-700 4"0180 4"01788 4"01054 0'0360 0"03576 0"03594 3"9820 3"98212 3"97459 
1"800 4"0132 4.01306 4"00722 0"0263 0"02612 0.02627 3"9869 3"98694 3"98095 
1"900 4'0097 4"00962 4"00496 0"0194 0"01923 0"01934 3"9903 3"99039 3"98562 
2-000 4.0072 4-00713 4.00342 0.0144 0-01427 0.01436 3"9928 3"99287 3"98907 
2.100 4"0054 4"00533 4"00237 0"0107 0"01066 0"01073 3"9946 3"99467 3"99164 
2"200 4"0040 4"00402 4"00165 0"0081 0"00803 0"00809 3"9960 3"99599 3"99356 
2.300 4"0031 4"00305 4"00115 0"0061 0"00609 0"00614 3"9969 3"99695 3"99501 
2.400 4.0023 4"00233 4.00080 0.0047 0"00466 0"00469 3"9977 3"99767 3"99611 
2"500 4"0018 4"00179 4"00056 0"0036 0.00358 0"00361 3"9982 3"99821 3"99695 
2"600 4-0014 4.00139 4.00039 0.0028 0"00277 0"00280 3"9986 3"99861 3"99760 
2"700 4"0011 4.00108 4"00028 0"0022 0"00216 0"00218 3-9989 3"99892 3"99810 
2.800 4"0009 4.00085 4"00019 0"0017 0.00170 0"00171 3"9991 3-99915 3"99848 
2"900 4"0007 4"00067 4"00014 0.0013 0"00134 0"00135 3"9993 3"99933 3"99879 
3"000 4"0005 4"00053 4"00010 0"0011 0"00106 0"00107 3"9995 3"99947 3"99902 
3-100 4"0004 4"00042 4"00007 0"0009 0"00085 0"00085 3"9996 3"99958 3"99921 
3-200 4-0003 4.00034 4-00005 0.0007 0.00068 0.00069 3.9997 3.99966 3.99936 
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Table 1 (cont.) 

K* ha(B) h~(B) he(B) L"(B) L~(B) Le(B) h~(B) hv(U) he(B) 
3"300 4 " 0 0 0 3  4"00027  4"00003 0 " 0 0 0 6  0"00055  0"00055  3 " 9 9 9 7  3"99973 3"99948 
3"400 4 " 0 0 0 2  4"00022  4"00002  0 " 0 0 0 4  0"00044  0"00045  3 " 9 9 9 8  3"99978  3"99957 
3"500 4 " 0 0 0 2  4"00018  4"00002  0 " 0 0 0 4  0"00036  0"00036  3 " 9 9 9 8  3"99982  3"99965 
3"600 4"0001  4"00015  4"00001 0 " 0 0 0 3  0"00030  0"00030  3 " 9 9 9 9  3"99985  3"99971 
3"700 4"0001  4"00012  4"00001 0 " 0 0 0 2  0"00024  0"00025  3 " 9 9 9 9  3"99988  3"99976 
3"800 4"0001  4"00010  4"00001 0 " 0 0 0 2  0"00020  0"00020  3 " 9 9 9 9  3"99990  3"99980 
3"900 4"0001  4"00008  4"00000  0 " 0 0 0 2  0"00017  0"00017  3 " 9 9 9 9  3"99992  3"99984 
4"000 4"0001  4"00007  4"00000  0"0001  0"00014  0"00014  3 " 9 9 9 9  3"99993 3"99986 

* K=sin (o9/2)/2 (/~-1); B=4rcK. 
(a) Calculated from the analytical HF wavefunction of Clementi (1965). 
(b) Calculated from the analytical two-configuration wavefunction of Watson (1961). 
(c) Calculated from the 55 term CI wavefunction of A. W. Weiss (Weiss, 1961) via the NSO and NSG analysis of Barnett (1965). 

each J~j appearing in (3a) and (3b) involves a double 
summation over the STO basis rather than single 
STO's ~0i, ~0j as is the case with the definition (24e) 
of  I. 

Barnett, Linderberg & Shull 's (1965) 1-matrix anal- 
ysis of  Weiss's (1961) CI Be wavefunction involves 17 
NSO's  of s-, p-, d- and f- type symmetry. Each NSO 
in turn is expanded over a STO basis of  the proper 
symmetry. The sum of the 1-matrix eigenvalues is 4.0 
to six-figure accuracy and we therefore find that 
Ie(O)/Iel= 16, a result in agreement with the general 
observations of § 2B of I. A straightforward evaluation 
of  (14-1) yields the CI values for Ic(lt)/Iel when o9 ¢ 0. 

Relative to the 1-matrix, the Weiss 2-matrix is 
rather complex since it contains a total of  185 non-zero 
eigenvalues. However, only the first 50 NSG (ordered 
in decreasing magni tude of their occupation numbers)  
have eigenvalues greater than 1 x 10 -5 and the sum of  
these is 5-99987. Neglect of  the remaining NSG (Bar- 
nett (1965) only lists gl-gso and g59-g6z in his tabulation) 
can introduce an error no greater than 2 x 10 -3 % into 
the CI h (p )  values. This error estimate is based on the 
observation that the sum of  the eigenvalues for the 
complete 2-matrix expansion must  be exactly ( 4 ) = 6  
with the normalizat ion employed. 

The 50 N S G  used in the present computat ion of  
correlated It(p) values are of  1S, 3S, 1p, 3p, ID o r  3D 
symmetry.* The NSG in turn are expanded in a sum 
involving two electron configurations built from STO's. 
Each configuration is an eigenfunction~f of the spirt 
and angular momen tum operators ~z,~z, Lz, Lz. For 
instance a typical iS NSG has the expansion 

gi(1,2)= ~ Oct)(rbsl;r2,s2) Ctj (t=tl,tz) (5a) 
t 

* In § 2C of I it was mentioned that only the spatially 
symmetric and antisymmetric NSG components were needed 
to evaluate the h(B) expression, regardless of the M and S 
values of the atomic state. For singlet states such as we are 
examining here, the NSG are of either pure singlet or triplet 
character, and are equal to the natural geminals (NG) multi- 
plied by an appropriate 2-particle spin function. 

t The configurations listed by Barnett & Shull (1967) are 
defined only as to spin state. They must be projected in order 
to obtain the proper L-state (G. P. Barnett, private communica- 
tion). 

where the D(t) notation indicates a configuration con- 
structed from Slater type orbitals (STO) ~0q(r,s), 
(ptz(r,s) [cf. the notation of (21-I)]. Thus a 1S geminal 
can involve configurations of the form (np,mp), (nd, md), 
(ns, ms) and so forth. The s,p, d , . . .  notation again indi- 
cates the symmetry species (angular momentum quantum 
number  l) of  the single STO while n, m , . . . i n d i c a t e s  
its principal quantum number.  In order to obtain 1S 
states from such configurations one can apply projec- 
tion operator techniques (Fieschi & Ltiwdin, 1957; 
Calais & Linderberg, 1965). The IS component  of  say 
a (3d, 3d) configuration can therefore be written as 

(3d,3d)ls= 1/l/5{[3d+z~ (1) 3d_zfl (2)] 

+[3d_2~ (1) 3d+zfl(2)] +[3d0~ (1) 3doff (2)] 
- [3d_1~ (1) 3d+,/~ (2)]- [3d+,~ (1) 3d_,/~ (2)]) (56) 

where the notation is that used in (2b). As a specific 
example of 'd iagonal '  matrix elements [see (23-I)] 
encountered in the evaluation of  It(p) we find that  

((3d,3d)lslexp {i~'r~2} ] (3d,3d),s) 

= If3a0~aal2 + ~ l  faa,2~3dl 2 + Jv~lf3d,a)adl z (5C) 

where thef ts  are exactly those defined by the expansion 
(24e) of  I. Thus correlated h (p)  values for o9 ¢ 0 were 
obtained by evaluating (23-1) with the truncated N S G  
expansion, subject to the constraint conditions (29a, 
b, and c) of  I. 

The accuracy of the present calculations was checked 
by a sum-rule procedure. The one-electron contribu- 
tions to the potential energy of the scatterer can be 
obtained (Silverman & Obata,  1963) from the coherent 
X-ray scattering factor F (p )  values with the sum rule 

(6) 

while the two-particle contributions can be obtained 
(Tavard & Roux, 1965) from 

Iel 
(7) 
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Equations (6) and (7) were integrated numerically* 
using a standard Simpson's rule procedure. The sum 
rule values of (l/r> and (1/ra2> are presented in Table 
2 along with the values computed directly from the 
H F  and Watson functions and from the NSO and 
truncated NSG expansions. 

1 and½"~' 1-~-for the Table 2. Expectation values of ~ r--[ i, : nj 

IS state of atomic Be 

HF(a) Watson(0) Weiss(e) 

< ) > s u m  rule 8"4087 8"4178 8"4247 

< ~- >calculated 8.4089 8-4179 8.4246 

< r!-~->sum rule 4.4892 4-4625 4.3803 

\rl/(12 '~calculated 4.4896 4.4626 4.3803 

(a) Computed from the analytical H F  function of Clementi 
(1965). 

(b) Computed from the two-configuration function of Watson 
(1961). 

(c) Computed from the NSO and NSG analysis (Barnett, 1965) 
of A. W. Weiss (1961) CI function. 

3. Discussion 

No attempt is made to discuss the correlation problem 
per se since we are only interested in examining how 
the values of the total, coherent and incoherent scat- 
tered X-ray intensities are affected by electron corre- 
lation. Since the 2-matrix /"(2) is antisymmetric [see 
(7c) of I], 

F~z) (x1, X2 [ X~ X'2)=Oif X~=Xz orif  X; =X•, 

where X~ =(ri,s 0 denotes the combined space-spin co- 
ordinate. Thus antisymmetry leads to an exchange 
correlation known as the 'Fermi hole' (LSwdin, 1959) 
which tends to keep electrons of parallel spin apart. 

Let us now consider the case rl-+r2. From the re- 
pulsive two-electron term H~2=e2/rlz in the Hamil- 
tonian H it is clear that /-/12 becomes increasingly 
large as r12 approaches zero. This mutual electron- 
electron repulsion introduces a 'correlation' or 'Cou- 
lomb hole' between the various electron pairs. For 
electrons of like spin, the correlation hole is partially 
compensated for by the Fermi hole. The Be HF func- 
tion takes into account the indistinguishability of elec- 
trons (i.e. it is antisymmetric), but it does not yield any 
description of the correlation or Coulomb holes since 

* The sensitivity of the numerical integrations to the grid 
spacings A/t was checked by halving the spacings until the re- 
sult was insensitive (one part in 106 ) to further scale division. 
Thus more F(/z) and h(/z) values were used in the numerical 
integrations than those which appear in Table 1, and these can 
be furnished on request. 

there is no restriction on placing two electrons of 
opposite spin in the same (spatial) orbital. 

If the charge distribution is spherically symmetric 
or if one averages over random orientations of a non- 
spherical atom, the effect of neglecting spatial corre- 
lation can be viewed in terms of the radial electron- 
electron distribution functiop,* defined in the notation 
of Bartell & Gavin (1964) as P(rl2). As shown by 
Bartell & Gavin (1964, 1965), It(p) is then relatedt 
to the Fourier sine transform of P(r12)/r12. It is ex- 
pected that the introduction of spatial correlation via 
the Coulomb holes will cause a correlated P(rlz) dis- 
tribution to be more diffuse than its HF  counterpart. 
Thus correlated It(p) values should be somewhat smal- 
ler in magnitude (for a given value of ¢t) than HF 
values provided that P HF(F12 ) and p c°rr(rl2 ) a re  of the 
same general shape. In any event IPM (e.g. HF) It(p) 
values are expected to be somewhat in error since 
P(r12) determines It(g) and vice versa. 

Gavin & Bartell (1966) have proposed a method for 
estimating the magnitude of correlation effects on 
It(p) values. According to Gavin & Bartell (1966), the 
total distribution function P(r~2) can be defined as a 
sum of pair distribution functions Pgz(r~2), one Pkl for 
each pair (k, l) of spin orbitals used in the construction 
of the wavefunction 7/g. As noted by Bartell & Gavin 
(1966) and others, the correlation energy Eeorr = E  exact 
- E n F ,  can be expressed as 

Eeorr = -f--Z l°°o AD(r)r dr+½ l o  AP(r12)r12 dr12, 

where 
AD(r) = Dexact ( r ) -  DriF(r) 

and 
AP(rl2)= Pexact(r12) - P~F(ra2) • 

In the notation of Bartell & Gavin, D(r) denotes the 
radial electron-nuclear distribution. With the assump- 
tion that AD(r) ~_ O, these authors obtain APkt(r12) contri- 
butions from known pair correlation energies Ek~ and 

* It is noted that P(r~2) may be obtained from a general 
spin free 2-matrix 

p(2) (rl, r2 [ rl,  r2) = Ps(rl, r2 I rl, r2) + 3Pt(rl, r2 [ rl, r2) 

by the relation 

P(rlE)drI2= I I P(2)(rl,r2 [ rl,r2)drldr2 

where the integration is carried out over all coordinates except 
r12. In the present normalization 

the number of distinct electrons pairs. The Coulomb hole has 
been formally defined for two-electron systems by Coulson & 
Neilson (1961) which he generalize here as Pexaet(rl2) - Prw(ra2). 

~" The connection between the Bartel l-Gavin (1964, 1965) 
formulation of It(/~) for X-ray scattering from non-interacting 
gas atoms and the density matrix formulation derived in I is 
established in the Appendix of this paper. 

A C 26A - 2 
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then evaluate* Ah(p)=hexaet(p)-h~F(p) from the 
relation 

AI,(p)/Iet= ~ ~ (r~2) sin ( ~ r 1 2 )  dry2. 
k ~k pr~2 

Although Watson's (1961) function and the truncated 
NSG expansion of the Weiss 2-matrix do not exactly 
satisfy the virial theorem ((V)/(T)=-2.00163 and 
-2.00022, respectively), the present computations 
clearly indicate that the correlation energy cannot be 
accounted for solely on the basis of an improved (re- 
lative to HF) radial electron-electron distribution func- 
tion as assumed by Gavin & Bartell (1966). One must 
consider changes in the radial electron-nuclear distri- 
bution'j" Do(r). This fact is reflected in the expectation 
values (1/r) listed in Table 2 and in curves I and II of 
Fig. 2. Since the AIc(p) values are roughly twofold 
larger in magnitude than the Air(p) values in the range 
0 .0-0 .3(A)  -1, the assumption that DgF(r)~_ D~x'ct(r)is 
obviously not justified, and the accuracy of the Gavin-  
Bartell (1966) scheme for estimating AIdp) values is 
also questionable. For example, Gavin & Bartell (1966) 
plotted a curve of estimated Air(p) values for the ~S 
ground state of Be (Fig. 3 of their paper) versus the 
scattering variable p. Their curve disagrees somewhat 
with curve I of Fig. 1 in that the positions of their 
maxima are shifted to slightly higher sin (o)/2)/2 values 
while their estimated L-shell peaking is roughly 25 % 
higher than that indicated by the present calculations. 

Gavin & BarteU (1966) also computed It(p) values 
from the CI wavefunction of Boys (1950) and from 
the analytical HF function of Roothaan, Sachs & 
Weiss (1960). Although the Boys function accounts 
for 52 % of the correlation energy, these authors found 
negative values for Air(p) (Fig. 3 of Bartell & Gavin, 
1966). The implication of this result is that the Boys 
P(r~2) distribution contracts relative to its HF counter- 
part over a certain range of r~2 values (roughly corre- 
sponding to the K-shell region) indicating that this 
function does not yield a proper description of corre- 
lation effects. 

In addition to providing 'accurate' X-ray scattering 
factors and intensities, the present computations yield 
qualitative information about the correlated electron- 
electron and electron-nuclear radial distributions 

P(r12) and Do(r). It is observed from Fig. 2 that the 
K-shell component of the correlated Do(r) distribution 
expands slightly towards larger r values while the 
L-shell component contracts considerably towards 
smaller r values, relative to the HF distribution. While 
the L-shell contraction is expected on the basis of an 
increased effective nuclear charge for the correlated 
atom, the slight K-shell expansion cannot be explained 
in this manner. 

In order to determine whether or not these shifts in 
Do(r) are due to 'pure correlation' effects (Larsson & 
Smith, 1969; Brown, Larsson & Smith, 1969) or to 
'one-electron' effects (i.e. the one-electron contribu- 
tions f~ discussed by Sinan@,lu & Tuan, 1963), Ie(p) 
values were computed with the 'best density' deter- 
minant* constructed from the Weiss 1-matrix. The 
differences Ale(p) between HF and correlated and be- 
tween 'best density' and correlated are shown in Fig. 3. 

An expansion of the exact wavefunction ~Ug in terms 
of the 'best overlap' orbitals* has the property that it 
eliminates all singly-excited configurations, thereby 
allowing an exact assessment of 'one-electron' effects 
with respect to the expectation values of one-electron 
operators. From curve I of Fig. 2 it is evident that the 
L-shell contraction of the correlated Do(r) distribution 
can be explained almost entirely on the basis of these 
effects. Although we base our conclusion on results 
obtained with the 'best-density' rather than the 'best- 
overlap' IPM, these two models (while not identical) 
are similar enough to account for the fluctuations in 
the correlated Do(r) distribution observed here. 

From Fig. 1 we can deduce that the maxima of the 
correlated P (r12) distribution are shifted towards higher 
rlz values, in agreement with the argument that the 
'Coulomb holes' tend to make it more diffuse than the 
HF distribution. With respect to the Watson It(p) 
values, we see that the L-shell component of P(rl2) 
shifts to higher r~2 values while the K-shell component 
remains almost stationary with respect to HF. This 
behaviour is to be expected since the Watson function 

* A glossary of  various IPM's  is presented at the end of this 
paper. 

0"00 

* The Gavin-Bartel l  (1966) scheme is not  rigorously correct - 0 0 5  
since the AP~t(r12) functions which they obtain f rom known 
pair correlation energies E~t are related to the second order 
transition density matrices F~z(2)(X1,X2IXbX2) whereas the -0"10 
It(g)/Ia expression is defined in terms of the ground state 
wavefunction ~g, or as has been shown in I, in terms of the -0"15 
spin-free 2-matrix obtained from ~g. The pair correlation 
energies E,~ are defined as the transition matrix elements, E~z = 
(~FIHIek~), where ~z  is the sum of all determinants -0"20 
doubly excited with respect to the pair (k, l) in the HF deter- 
minant ~ - .  Using intermediate normalization, i.e. 1= 
( ~ -  J kgexaet}, the total correlation energy Eeorr is defined 
exactly as the sum of the Ek,'s for all possible doubly excited 
configurations. 

]" The function Do(r) is defined in the Appendix. 

I I 1 I I I I I I 

, / '1 ;D--  ;Weiss 

I I I I I 1 I, 1 I 
0"00 0"20 0"40 0"60 0"80 1"00 1"20 1"40 1"60 1"80 2'00 

sin (~/2)/), (A) -~ 
Fig. 3. Intensity differences for coherent  scattering for the ]S 

state of the Be atom. 
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was designed to take into account the near-degeneracy 
in the L-shell. 

The largest differences between HF and CI values 
are observed for the incoherent intensity. Although the 
largest absolute deviation in Ii(/~) is observed at 
0.105(A) -~, relative differences as large as 40-50% 
occur in the range 0.0-0.020(N) -1. At these values of 
sin (03/2)/2 the Ii(/z) contributions !to It(#) are indeed 
small relative to the coherent component It(/0, but any 
experimentalist making corrections for incoherent con- 
tributions to It must be aware of the fact that incoherent 
intensity values obtained from HF functions may be 
seriously in error at small values of the scattering 
variable. 

4. Summary 

Correlated values for the total, coherent and incoherent 
intensities of X-ray radiation scattered by atomic 
systems can be obtained from the general density 
matrix formalism presented in I. Although values of 
the coherent scattering factor F( /0  for the ~S ground 
state of atomic Be are not presented here,* they are 
easily obtained from the I¢(/z) values listed in Table 1. 
The computation of Ic(/Z) values from the NSO ex- 
pansion of the Weiss 1-matrix is much simpler than 
computing matrix elements of the scattering operator 
e i..' between the various determinants of the CI func- 
tion. The latter procedure requires the evaluation of 
overlap integrals in addition to the matrix elements, 
whereas the NSO's are constructed mutually ortho- 
normal. 

The appreciable L-shell contraction of the corre- 
lated Do(r) distribution can be explained by 'one-elec- 
tron' effects, although a computation of It(p) values 
from the exact 'best-overlap' determinant will be re- 
quired to unequivocally settle this point. Our Ic(/Z) 
computations have clearly demonstrated that DOHF(r) 
~_D0e°rr(r) is not a valid assumption. Conversely, the 
assumption that FI~F(IU) ~ -- Feorr(/~) is not valid, as the 
accuracy of these values is clearly a function of the 
scattering variable p. 

Finally, we wish to emphasize the importance and 
general utility of the sum rules (6) and (7) which were 
used to check the present calculations. Determinations 
of ( l / r )  and (1/r12) by direct integration of experi- 
mental gas scattering intensity curves should yield 
reasonably accurate experimental values for the 1-and 
2-electrons contributions to the correlation energy of 

* R. J. Weiss (1966) has reported correlated F(/l) values 
which were calculated directly from the CI Be atom wavefunc- 
tion of A. W. Weiss (196l), but there is a slight disagreement 
with our It(p) values [F2(/t)= It(p)]. As a check on the numer- 
ical accuracy of Barnett's (1965) NSO expansion, It(p) values 
were also calculated from the truncated NSG expansion of 
the Weiss 2-matrix and these values agree with the 1-matrix re- 
suits. As the truncated NSG expansion yields a total energy 
within 0.0003 atomic units of the actual Weiss (1961) energy, 
the NSO and truncated NSG expansions must be of compar- 
able numerical accuracy. Also, the table of F(/0 values given 
on p. 187 of Weiss (1966) has its headings interchanged since 
HF should read 55 configuration interaction and vice versa. 

gas atoms. In practise the sum rule procedure for ob- 
taining energies is simpler than the Bartell-Gavin 
(1964) method, wherein one first Fourier transforms 
the intensity data to obtain experimental Do(r)/r and 
P(rn)/&2 curves and then integrates these curves to 
obtain total energies via the virial theorem. 

APPENDIX 

The expression for the total intensity of scattered 
X-ray radiation was defined [see (20-I)] by the relation 

h(p,)/Iel=N+2 I I P(Z) (rbr2[rbr2) 

x exp {ilx.r12}dradr2, (A1) 

where P (2) denotes the combination P (z) = 3Pt + Ps of 
triplet Pt and singlet Ps spatial 2-matrices. If the elec- 
tron distribution is spherically symmetric or if one 
averages over all orientations c~, fl of the scattering 
vector S for a fixed value of sin @/2)/2 (this is equiv- 
alent to averaging over random orientations of a non- 
spherical atom); insertion of the plane wave expansion 
for exp {ilx.r12} into (A1) and integration over ~, fl 
yields 

(I-c-1-/It(") \ = f 2n l n O  o (It(P)icl N)sin ~d~xdfl 

=2 II p(2) (rbr2,rbrz)jo(/urlz) drldr2 

= 2 P0 (r12) sin______~rl__2z drl2, (A2) 
o lira2 

where P0(r12), the totally symmetric component (under 
spatial rotations) of the distribution P(rl2), is obtained 
from a general p(2) (rl,rzlrl,r2) by the relation 

P°(r12)dr12= fl p(2)(rl,rz]rbrz)drldr2, (a3)  

where the integrations are carried out over all coordi- 
nates but ra2. 

The connection with the Bartell-Gavin (1964) expres- 
sion for It(/u) and the 2-matrix formulation of I is 
established by noting that the Bartell-Gavin (1964) 
radial electron--electron distribution function P(r~2) 
mentioned in the text above is just that defined by (A3). 

If one considers the spherical average ( F )  of the 
coherent scattering factor F, which was defined by 
(16-I) as 

F(/t,~,fl) = ~ exp 
/ I  

{ila. r}p(r) dr (A4) 
d 

one obtains 

where 

Do(r) = r 2 ) sin 0d0d~o 
0 

(A6) 

A C 2 6 A  - 2* 
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is the totally symmetric component (under spatial rota- 
tions) of a general charge density matrix ,2(r). For a 
specific orientation of an aspherical gas atom both It 
and F obviously depend on the orientation as well as 
the magnitude of S. Thus (A5) and (A2) can be con- 
sidered as special cases of the general formulae (A4) 
and (A1) respectively. 

Glossary of independent particle models 

Independent particle model (IPM) wavefunctions de- 
cribing an atomic state may be constructed according 
to various criteria as follows: 

(1) The HF wavefunction is chosen as the best 
single determinant approximation to the exact wave- 
function qJg as determined from the energy variation 
principle. Thus ~U~F yields the best single determinant 
approximation to the total energy. However, if qJ~v 
is constrained to be an eigenfunction of the spin and 
angular momentum operators, it cannot in general be 
represented by a single Slater determinant. 

(2) The 'best-overlap' (BO) determinant is construc- 
ted to maximize the overlap between itself and the 
'exact' or reference wavefunction ~g. An expansion of 
qJg in terms of BO orbitals (extended in an arbitrary 
way to form a complete basis set) eliminates all singly 
excited configurations. Such a model is therefore suit- 
able for assessing the importance of 'one-electron' 
correlation effects. This model is also known as the 
'exact SCF' (L~wdin, 1962) theory and the BO orbi- 
tals are often referred to as 'Brueckner' orbitals. 

(3) The 'best-density' (BD) determinant is construc- 
ted so that its Fock-Dirac density matrix is the best 
idempotent approximation to the 1-matrix ~'~,_(XIlX2) 
corresponding to ~ug. It is constructed from {he first 
N (ordered after decreasing magnitude of their occu- 
pation numbers) NSO's of qJg. In general the BO and 
BD orbitals are not the same (Kutzelnigg & Smith, 
1964). 

Other IPM's not specifically mentioned in context 
with the present work include the 'spin-adapted best 
density' and 'symmetry-adapted best density' models. 
These are discussed in the work of Smith & Kutzel- 
nigg (1968a, b, c) and Kutzelnigg & Smith (1964) along 
with the BD and BO models. 
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