The density matrix formalism developed here provides a general extension of the usual Waller-Hartree equations and therefore facilitates a study of the importance of effects other than electron exchange; that is, we are in a favorable position to assess the importance of electron correlation on X-ray scattering. This topic is treated in the next paper where we compare coherent and total intensity values obtained for the Be atom from the NSO and NSG analysis of a configuration interaction (CI) function, and from a two-configuration function, with those computed within the Waller-Hartree formalism from a HF function.

The authors wish to thank the National Research Council of Canada and the Principal's Research Fund of Queen's University for their financial support of this work. One of us (RB) also wishes to thank the Ontario Department of University Affairs for a postgraduate fellowship. One of us (VHS) expresses his appreciation to Professor P.-O.Löwdin for his hospitality in Uppsala where portions of this research were done. A preliminary account of this work appeared as Technical Note 221 (August 1968) of the Uppsala Quantum Chemistry Group.

## References

Ando, T. (1963). Rev. Mod. Phys. 35, 690.
Barnett, G. P. \& Shull, H. (1967). Phys. Rev. 153, 61.

Bartell, L. S. \& Gavin, R. M. (1964). J. Amer. Chem. Soc. 86, 3493.
Benesch, R. \& Malli, G. L. (1968). Intern. J. Quantum Chem. 2, 371.
Bingel, W. (1960). J. Chem. Phys. 32, 1522.
Bonham, R. A. (1965). J. Chem. Phys. 43, 1460.
Breit, G. (1924). Phys. Rev. 27, 262.
Freeman, A. J. (1959). Phys. Rev. 113, 169.
Ibers, J. A. (1958). Acta Cryst. 11, 178.
Löwdin, P.-O. (1955). Phys. Rev. 97, 1474.
McWeeny, R. (1951). Acta Cryst. 4, 513.
McWeeny, R. (1960). Rev. Mod. Phys. 32, 335.
McWeeny, R. \& Kutzelnigg, W. (1968). Intern. J. Quantum Chem. 2, 187.
Morse, P. M. (1932). Rev. Mod. Phys. 4, 577.
Pohler, R. F. \& Hanson, H. P. (1965). J. Chem. Phys. 42, 2347.

Rutherford, E. (1911). Phil. Mag. 21, 669.
Thomson, J. J. (1906). Conduction of Electricity Through Gases. Cambridge Univ. Press.
Waller, I. \& Hartree, D. R. (1929). Proc. Roy. Soc. A124, 119.

Acta Cryst. (1970). A26, 586

# Correlation and X-ray Scattering. II. Atomic Beryllium 

By Robert Benesch and Vedene H. Smith, Jr.<br>Department of Chemistry, Queen's University, Kingston, Ontario, Canada

(Received 7 November 1968 and in revised form 30 December 1969)


#### Abstract

In order to assess the importance of correlation effects with respect to the Hartree-Fock (HF) results, values of the coherent, total and incoherent scattered X-ray intensities were computed for the ${ }^{1} S$ ground state of atomic beryllium. Natural spin orbitals (NSO) and natural spin geminals (NSG) constructed from the accurate configuration interaction (CI) wavefunction of A.W. Weiss were used in the evaluation of these X-ray quantities from previously derived density matrix expressions. Values were also computed from the two-configuration wavefunction of Watson, which accounts for the $2 s-2 p$ near degeneracy effect. As expected, the CI results for the total intensity differ from their HF counterparts but the magnitudes of the absolute deviations are not as large as those observed for the coherent intensity values. Although the HF results for the coherent intensity are in reasonably good agreement with the CI values, conclusions based on the Møller-Plesset theorem must be made with caution. The largest percentage deviations between HF and CI results, however, are observed for the incoherent intensity. All calculations reported here were verified by the use of sum rules.


## 1. Introduction

In this paper we examine the effects of electron correlation on the coherent, incoherent and total intensities (the sum of the Compton and Rayleigh contributions) of scattered X-ray radiation. Total intensity values computed from Hartree-Fock (HF) wavefunctions are expected to be somewhat erroneous since an independent particle model (IPM) description of the atom assumes that the spatial coordinates of each electron are in fact independent of the spatial coordinates of
the remaining electrons. This neglect of the so-called 'Coulomb holes' associated with electron pairs can lead to errors when evaluating the total intensity expression since the scattering operator contains the inter-electron distances $\mathbf{r}_{i j}=\mathbf{r}_{i}-\mathbf{r}_{j}$. These coulombic manifestations of correlation must not be confused with exchange effects since exchange terms, which do enter the IPM (Waller-Hartree, 1929) expression for the total scattered intensity, owe their existence only to the antisymmetric behaviour of the HF wavefunction. Thus antisymmetry leads to an exchange corre-
lation between electrons of like spin - the so-called 'Fermi hole' discussed by Löwdin (1959).
With respect to the accuracy of coherent X-ray scattering factors computed from HF wavefunctions, reference can be made to the Møller-Plesset (1934) theorem* which states that these quantities must be accurate to second order (in the sense of a perturbation treatment) since they are expectation values of an oneelectron operator. However, the coherent scattering factor $F(\mu)$ is related to the Fourier transform of the charge density matrix $\bar{\gamma}(\mathbf{r})$ and this function may not be represented equally well in all regions of space within the HF approximation. This means, of course, that the accuracy of HF form factors is a function of the scattering variable.
In the next section we use a density matrix formalism derived in the preceding paper (Benesch \& Smith (1970), hereafter referred to as I) to obtain 'accurate' correlated values of the coherent, incoherent and total scattered X-ray intensities for the ${ }^{1} S$ ground state of atomic Be . The natural spin orbitals (NSO) and natural spin geminals (NSG) used in the present calculations are those obtained by Barnett \& Shull (1967)

[^0]Fig. 1. Intensity differences for total scattering for the ${ }^{1} S$ state of the Be atom.


Fig.2. Intensity differences for coherent scattering for the ${ }^{1} S$ state of the Be atom.
from the accurate ( $93.06 \%$ of the correlation energy, 55 configurations) configuration interaction (CI) function of A. Weiss W. (Weiss, 1961). Values were also obtained from Watson's (1961) two-configuration wavefunction ( $46.07 \%$ of the correlation energy) and from Clementi's (1965) analytical HF function ( $0 \%$ of the correlation energy).

## 2. Results

Values of the coherent $I_{c}$, incoherent $I_{i}$ and total $I_{t}$ intensities of scattered X-ray radiation computed from the three wavefunctions mentioned above are presented in Table 1 at various intervals of $\sin (\omega / 2) / \lambda$, in $\AA^{-1}$. For a ${ }^{1} S$ state the $\mid$ scattering variable $\mu=2 \pi|S|$ depends only on the magnitude of the scattering vector S and not on its direction. For purposes of illustration the various differences in total intensity $\Delta I_{t}(\mu)$ are plotted versus $\sin (\omega / 2) / \lambda$ in Fig. 1. Fig. 2 displays the coherent intensity differences $\Delta I_{c}(\mu)$. To zero order in the incident X-ray energy, the correlated values for $I_{i}(\mu)$ were obtained by subtracting the coherent from the total intensity values.

A few remarks regarding the present computations are in order. The HF results (Benesch, 1967; Tavard, Nicholas \& Roualt, 1967) were obtained by evaluating the Waller-Hartree (1929) expressions for $I_{c}(\mu)$ and $I_{i}(\mu)$. Watson's (1961) two-configuration function, which takes into account the effects of the near degeneracy of $2 s$ and $2 p$ orbitals (Linderberg \& Shull, 1960; Layzer, 1959) is written as

$$
\begin{equation*}
\Psi_{g}=a \Psi_{1}+b \Psi_{2} \tag{1}
\end{equation*}
$$

where $a$ and $b$ are optimized mixing parameters and $a^{2}+b^{2}=1$. The functions $\Psi_{1}, \Psi_{2}$ have the definitions

$$
\begin{align*}
\Psi_{1} & =[1 s \alpha(1) 1 s \beta(2) 2 s \alpha(3) 2 s \beta(4)],  \tag{2a}\\
\Psi_{2} & =\frac{1}{\sqrt{3}}\left\{\left[1 s \alpha(1) 1 s \beta(2) 2 p_{+} \alpha(3) 2 p_{-} \beta(4)\right]\right. \\
& +\left[1 s \alpha(1) 1 s \beta(2) 2 p_{-} \alpha(3) 2 p_{+} \beta(4)\right. \\
& \left.-\left[1 s \alpha(1) 1 s \beta(2) 2 p_{0} \alpha(3) 2 p_{0} \beta(4)\right]\right\} \tag{2b}
\end{align*}
$$

where the bracket notation [] indicates a normalized Slater determinant constructed from the orthonormal atomic orbitals $1 s, 2 s$, and $2 p_{+}, 2 p_{-}, 2 p_{0}$. The atomic orbitals are expanded in a Slater-type orbital (STO) basis $\left\{\varphi_{j}(\mathbf{r})\right\}$; the,,+- 0 subscripts refer to the $z$ component ( $m_{l}$ quantum number) of angular momentum for the threefold degenerate $2 p$ orbitals. With Watson's ${ }^{1} S$ state wavefunction the expressions for the coherent and total scattered X-ray intensities are easily shown to be

$$
\begin{align*}
I_{c} / I_{\mathrm{cl}} & =\left|2 f_{1 s 1 s}+2 a^{2} f_{2 s 2 s}+2 b^{2} f_{2 p(0) 2 p}\right|^{2}  \tag{3a}\\
I_{t} / I_{\mathrm{cl}} & =2 a^{2}\left[f_{1 s 1 s}^{2}+4 f_{1 s 1 s} f_{2 s 2 s}+f_{2 s 2 s}^{2}-2 f_{1 s 2 s}^{2}\right] \\
& -4 a b \sqrt{2} 3 f_{2 s(1) 2 p}^{2} \\
& +2 b^{2}\left[f_{1 s 1 s}^{2}+4 f_{1 s 1 s} f_{2 p(0) 2 p}+f_{2 p(0) 2 p}^{2}+2 f_{2 p(2) 2 p}^{2}\right. \\
& \left.-2 f_{1 s(1) 2 p}^{2}\right]+4 . \tag{3b}
\end{align*}
$$

The matrix elements appearing in (3a) and (3b) are similar to those defined by equation ( $24 e$ ) of I. The subscripts $s, p$ define the values of the angular momentum quantum mumbers $l_{1}, l_{2}$ of the two atomic orbitals
involved in the particular matrix element while the bracketed subscript refers to the order $p$ of the spherical Bessel function, $\left|l_{1}-l_{2}\right| \leq p \leq l_{1}+l_{2}$. Since each atomic orbital is expanded over a STO basis $\left\{\varphi_{i}(\mathbf{r})\right\}$,

Table 1. Total' coherent and incoherent scattered $X$-ray intensities for the $\operatorname{Be}$ atom in the ground state $\left({ }^{1} S\right)$.

| $K^{*}$ | $I_{t}{ }^{a}(\mu)$ | $I_{t}{ }^{\text {b }}(\mu)$ | $I_{t}{ }^{c}(\mu)$ | $I_{c}{ }^{a}(\mu)$ | $I_{c}{ }^{\text {b }}(\mu)$ | $I_{c}{ }^{c}(\mu)$ | $I_{i}{ }^{a}(\mu)$ | $I_{i}{ }^{\text {b }}(\mu)$ | $I_{i}{ }^{c}(\mu)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000 | 16.0004 | 16.00000 | 15.99972 | 16.0005 | 16.00000 | 16.00001 | -0.0001 | 0.00000 | $-0.00028$ |
| 0.005 | 15.9813 | 15.98043 | 15.98017 | 15.9750 | 15.97606 | 15.97597 | $0 \cdot 0062$ | 0.00437 | 0.00420 |
| 0.010 | 15.9242 | 15.92199 | 15.92178 | 15.8989 | 15.90459 | 15.90420 | $0 \cdot 0252$ | 0.01740 | $0 \cdot 01758$ |
| 0.015 | $15 \cdot 8298$ | $15 \cdot 82550$ | $15 \cdot 82535$ | 15.7733 | 15.78656 | 15.78568 | $0 \cdot 0565$ | 0.03893 | 0.03967 |
| 0.020 | 15.6996 | $15 \cdot 69226$ | $15 \cdot 69218$ | 15.6002 | $15 \cdot 62360$ | 15.62204 | 0.0994 | 0.06866 | $0 \cdot 07014$ |
| 0.025 | 15.5351 | $15 \cdot 52408$ | $15 \cdot 52403$ | 15.3819 | 15.41789 | 15.41549 | $0 \cdot 1532$ | $0 \cdot 10619$ | $0 \cdot 10855$ |
| 0.030 | 15.3385 | $15 \cdot 32319$ | $15 \cdot 32312$ | $15 \cdot 1217$ | $15 \cdot 17216$ | $15 \cdot 16877$ | $0 \cdot 2168$ | $0 \cdot 15103$ | $0 \cdot 15435$ |
| 0.035 | $15 \cdot 1124$ | 15.09217 | 15.09200 | 14.8232 | 14.88956 | 14.88506 | 0.2892 | $0 \cdot 20261$ | 0.20694 |
| 0.040 | 14.8595 | 14.83393 | 14.83355 | 14.4904 | 14.57366 | 14.56795 | $0 \cdot 3691$ | 0.26027 | 0.26559 |
| 0.045 | 14.5828 | 14.55160 | 14.55087 | $14 \cdot 1277$ | 14.22826 | 14.22129 | 0.4551 | $0 \cdot 32334$ | $0 \cdot 32958$ |
| 0.050 | 14.2855 | 14.24847 | 14.24723 | 13.7395 | $13 \cdot 85740$ | $13 \cdot 84912$ | 0.5460 | $0 \cdot 39107$ | $0 \cdot 39811$ |
| 0.055 | 13.9708 | 13.92793 | 13.92601 | $13 \cdot 3304$ | 13.46520 | 13.45561 | $0 \cdot 6404$ | $0 \cdot 46272$ | $0 \cdot 47040$ |
| 0.060 | $13 \cdot 6420$ | 13.59335 | 13.59058 | 12.9050 | 13.05581 | 13.04494 | 0.7370 | 0.53754 | $0 \cdot 54564$ |
| 0.065 | 13.3023 | 13.24810 | $13 \cdot 24430$ | 12.4678 | $12 \cdot 63332$ | $12 \cdot 62123$ | 0.8345 | 0.61478 | 0.62307 |
| 0.070 | 12.9548 | $12 \cdot 89540$ | $12 \cdot 89041$ | 12.0229 | 12.20168 | $12 \cdot 18847$ | 0.9318 | 0.69372 | 0.70194 |
| 0.075 | 12.6024 | 12.53833 | $12 \cdot 53201$ | $11 \cdot 5745$ | 11.76467 | 11.75045 | 1.0279 | 0.77366 | 0.78157 |
| 0.080 | $12 \cdot 2480$ | $12 \cdot 17977$ | $12 \cdot 17200$ | 11.1262 | 11.32580 | 11.31071 | 1-1219 | 0.85397 | 0.86130 |
| 0.085 | 11.8942 | 11.82236 | 11.81306 | $10 \cdot 6813$ | 10.88832 | 10.87251 | $1 \cdot 2129$ | 0.93404 | 0.94055 |
| 0.090 | 11.5431 | 11.46848 | 11.45761 | $10 \cdot 2428$ | 10.45515 | 10.43880 | $1 \cdot 3004$ | 1.01333 | 1.01881 |
| 0.095 | $11 \cdot 1970$ | $11 \cdot 12026$ | $11 \cdot 10780$ | $9 \cdot 8132$ | 10.02889 | 10.01218 | $1 \cdot 3838$ | 1.09137 | 1.09562 |
| $0 \cdot 100$ | 10.8576 | 10.77952 | 10.76551 | 9.3948 | 9.61180 | $9 \cdot 59492$ | 1.4628 | $1 \cdot 16772$ | $1 \cdot 17059$ |
| 0.105 | 10.5264 | $10 \cdot 44783$ | 10.43234 | 8.9893 | $9 \cdot 20581$ | $9 \cdot 18894$ | 1.5371 | $1 \cdot 24202$ | 1.24340 |
| 0.110 | 10.2049 | $10 \cdot 12648$ | $10 \cdot 10961$ | 8.5982 | $8 \cdot 81250$ | $8 \cdot 79583$ | $1 \cdot 6066$ | 1.31399 | 1.31379 |
| $0 \cdot 115$ | 9.8940 | 9.81651 | $9 \cdot 79841$ | 8.2227 | 8.43315 | $8 \cdot 41685$ | 1.6713 | $1 \cdot 38336$ | $1 \cdot 38155$ |
| $0 \cdot 120$ | $9 \cdot 5946$ | $9 \cdot 51872$ | $9 \cdot 49954$ | $7 \cdot 8634$ | 8.06875 | 8.05299 | 1.7312 | 1.44997 | $1 \cdot 44655$ |
| $0 \cdot 125$ | $9 \cdot 3074$ | $9 \cdot 23368$ | $9 \cdot 21361$ | 7.5209 | $7 \cdot 72001$ | $7 \cdot 70493$ | 1.7865 | $1 \cdot 51368$ | 1.50868 |
| $0 \cdot 130$ | $9 \cdot 0328$ | $8 \cdot 96177$ | 8.94101 | $7 \cdot 1956$ | $7 \cdot 38738$ | $7 \cdot 37312$ | 1.8372 | 1.57439 | 1.56789 |
| 0.135 | 8.7711 | $8 \cdot 70319$ | 8.68195 | $6 \cdot 8873$ | 7.07112 | $7 \cdot 05780$ | 1.8838 | 1.63208 | $1 \cdot 62415$ |
| $0 \cdot 140$ | $8 \cdot 5224$ | $8 \cdot 45800$ | $8 \cdot 43648$ | 6.5961 | $6 \cdot 77127$ | 6.75898 | 1.9263 | 1.68673 | 1.67750 |
| $0 \cdot 145$ | $8 \cdot 2867$ | $8 \cdot 22610$ | $8 \cdot 20451$ | $6 \cdot 3216$ | $6 \cdot 48771$ | $6 \cdot 47654$ | 1.9651 | 1.73838 | 1.72797 |
| $0 \cdot 150$ | $8 \cdot 0639$ | $8 \cdot 00730$ | 7.98584 | 6.0635 | $6 \cdot 22020$ | 6.21019 | $2 \cdot 0004$ | 1.78710 | 1.77564 |
| $0 \cdot 155$ | 7.8538 | $7 \cdot 80131$ | $7 \cdot 78015$ | 5.8211 | 5.96835 | $5 \cdot 95956$ | 2.0327 | 1.83296 | 1.82060 |
| $0 \cdot 160$ | $7 \cdot 6560$ | $7 \cdot 60777$ | $7 \cdot 58709$ | 5.5939 | $5 \cdot 73169$ | $5 \cdot 72414$ | 2.0621 | 1.87607 | 1.86295 |
| $0 \cdot 165$ | $7 \cdot 4704$ | $7 \cdot 42626$ | $7 \cdot 40619$ | $5 \cdot 3813$ | $5 \cdot 50969$ | 5.50339 | 2.0890 | 1.91657 | 1.90280 |
| $0 \cdot 170$ | $7 \cdot 2963$ | 7.25631 | $7 \cdot 23699$ | $5 \cdot 1826$ | $5 \cdot 30175$ | $5 \cdot 29670$ | 2.1137 | 1.95457 | 1.94029 |
| $0 \cdot 175$ | $7 \cdot 1335$ | 7.09745 | 7.07896 | 4.9971 | $5 \cdot 10723$ | $5 \cdot 10341$ | 2.1364 | 1.99022 | 1.97555 |
| $0 \cdot 180$ | $6 \cdot 9813$ | 6.94914 | 6.93157 | $4 \cdot 8240$ | $4 \cdot 92546$ | 4.92285 | $2 \cdot 1573$ | $2 \cdot 02368$ | $2 \cdot 00872$ |
| $0 \cdot 185$ | 6.8395 | $6 \cdot 81087$ | $6 \cdot 79426$ | $4 \cdot 6627$ | $4 \cdot 75578$ | $4 \cdot 75433$ | 2.1767 | 2.05509 | $2 \cdot 03993$ |
| $0 \cdot 190$ | $6 \cdot 7073$ | $6 \cdot 68211$ | 6.66649 | $4 \cdot 5124$ | $4 \cdot 59750$ | $4 \cdot 59717$ | 2.1949 | $2 \cdot 08461$ | $2 \cdot 06932$ |
| $0 \cdot 195$ | $6 \cdot 5843$ | $6 \cdot 56233$ | $6 \cdot 54771$ | $4 \cdot 3724$ | $4 \cdot 44995$ | $4 \cdot 45069$ | $2 \cdot 2119$ | 2.11238 | $2 \cdot 09702$ |
| $0 \cdot 200$ | $6 \cdot 4701$ | $6 \cdot 45102$ | $6 \cdot 43738$ | $4 \cdot 2421$ | 4.31247 | $4 \cdot 31421$ | $2 \cdot 2281$ | 2.13855 | $2 \cdot 12317$ |
| $0 \cdot 205$ | $6 \cdot 3641$ | $6 \cdot 34766$ | $6 \cdot 33499$ | $4 \cdot 1207$ | $4 \cdot 18440$ | $4 \cdot 18708$ | $2 \cdot 2434$ | 2.16326 | $2 \cdot 14790$ |
| $0 \cdot 210$ | $6 \cdot 2658$ | $6 \cdot 25178$ | $6 \cdot 24001$ | 4.0077 | $4 \cdot 06512$ | $4 \cdot 06868$ | $2 \cdot 2581$ | 2.18666 | $2 \cdot 17133$ |
| $0 \cdot 215$ | $6 \cdot 1748$ | $6 \cdot 16288$ | $6 \cdot 15198$ | 3.9025 | $3 \cdot 95403$ | $3 \cdot 95840$ | $2 \cdot 2723$ | 2.20886 | 2.19358 |
| $0 \cdot 220$ | 6.0906 | 6.08052 | 6.07041 | $3 \cdot 8045$ | $3 \cdot 85054$ | $3 \cdot 85565$ | $2 \cdot 2861$ | 2.22998 | $2 \cdot 21476$ |
| 0.225 | 6.0126 | 6.00427 | 5.99487 | $3 \cdot 7131$ | $3 \cdot 75412$ | $3 \cdot 75990$ | $2 \cdot 2995$ | $2 \cdot 25015$ | $2 \cdot 23497$ |
| $0 \cdot 230$ | 5.9406 | 5.93369 | $5 \cdot 92492$ | $3 \cdot 6279$ | $3 \cdot 66423$ | $3 \cdot 67061$ | $2 \cdot 3128$ | $2 \cdot 26946$ | $2 \cdot 25431$ |
| 0.235 | $5 \cdot 8741$ | $5 \cdot 86841$ | $5 \cdot 86018$ | $3 \cdot 5483$ | $3 \cdot 58039$ | $3 \cdot 58730$ | $2 \cdot 3258$ | $2 \cdot 28802$ | $2 \cdot 27288$ |
| $0 \cdot 240$ | $5 \cdot 8127$ | 5-80804 | $5 \cdot 80027$ | $3 \cdot 4740$ | $3 \cdot 50212$ | $3 \cdot 50950$ | $2 \cdot 3387$ | $2 \cdot 30591$ | $2 \cdot 29076$ |
| 0.245 | 5.7560 | $5 \cdot 75222$ | $5 \cdot 74482$ | $3 \cdot 4045$ | $3 \cdot 42900$ | $3 \cdot 43679$ | $2 \cdot 3515$ | $2 \cdot 32321$ | $2 \cdot 30803$ |
| $0 \cdot 250$ | 5.7037 | $5 \cdot 70062$ | $5 \cdot 69350$ | $3 \cdot 3395$ | $3 \cdot 36061$ | $3 \cdot 36874$ | $2 \cdot 3643$ | $2 \cdot 34001$ | $2 \cdot 32476$ |
| $0 \cdot 255$ | $5 \cdot 6555$ | $5 \cdot 65293$ | $5 \cdot 64599$ | $3 \cdot 2784$ | $3 \cdot 29657$ | $3 \cdot 30498$ | $2 \cdot 3770$ | $2 \cdot 35635$ | $2 \cdot 34101$ |
| $0 \cdot 260$ | $5 \cdot 6110$ | $5 \cdot 60884$ | $5 \cdot 60201$ | $3 \cdot 2211$ | $3 \cdot 23653$ | $3 \cdot 24515$ | $2 \cdot 3898$ | $2 \cdot 37231$ | $2 \cdot 35685$ |
| $0 \cdot 265$ | $5 \cdot 5699$ | $5 \cdot 56808$ | $5 \cdot 56127$ | $3 \cdot 1672$ | 3-18013 | 3-18893 | $2 \cdot 4026$ | $2 \cdot 38794$ | $2 \cdot 37234$ |
| $0 \cdot 270$ | $5 \cdot 5320$ | $5 \cdot 53038$ | $5 \cdot 52352$ | $3 \cdot 1164$ | $3 \cdot 12709$ | $3 \cdot 13601$ | $2 \cdot 4155$ | $2 \cdot 40329$ | $2 \cdot 38751$ |
| $0 \cdot 275$ | $5 \cdot 4969$ | 5.49549 | $5 \cdot 48851$ | 3.0685 | 3.07710 | 3.08610 | 2.4284 | 2.41839 | $2 \cdot 40241$ |
| $0 \cdot 280$ | 5.4646 | 5.46319 | $5 \cdot 45602$ | 3.0231 | 3.02990 | 3.03894 | $2 \cdot 4414$ | 2.43329 | $2 \cdot 41708$ |
| $0 \cdot 285$ | 5.4346 | $5 \cdot 43327$ | $5 \cdot 42584$ | $2 \cdot 9801$ | $2 \cdot 98525$ | $2 \cdot 99428$ | 2.4545 | $2 \cdot 44802$ | $2 \cdot 43156$ |
| $0 \cdot 290$ | $5 \cdot 4069$ | $5 \cdot 40551$ | $5 \cdot 39777$ | $2 \cdot 9393$ | 2.94290 | 2.95190 | 2.4676 | $2 \cdot 46261$ | 2.44587 |
| 0.295 | $5 \cdot 3812$ | 5.37973 | $5 \cdot 37163$ | $2 \cdot 9004$ | $2 \cdot 90266$ | $2 \cdot 91158$ | 2.4809 | $2 \cdot 47707$ | $2 \cdot 46004$ |
| $0 \cdot 300$ | $5 \cdot 3574$ | $5 \cdot 35577$ | $5 \cdot 34725$ | $2 \cdot 8632$ | $2 \cdot 86433$ | $2 \cdot 87315$ | 2.4942 | $2 \cdot 49144$ | 2.47410 |
| $0 \cdot 310$ | $5 \cdot 3145$ | $5 \cdot 31262$ | $5 \cdot 30317$ | $2 \cdot 7936$ | $2 \cdot 79267$ | $2 \cdot 80121$ | $2 \cdot 5210$ | 2.51995 | $2 \cdot 50195$ |
| $0 \cdot 320$ | $5 \cdot 2772$ | $5 \cdot 27490$ | 5.26439 | $2 \cdot 7292$ | $2 \cdot 72665$ | $2 \cdot 73485$ | $2 \cdot 5480$ | $2 \cdot 54825$ | $2 \cdot 52955$ |

Table 1 (cont.)

| $K^{*}$ | $I_{t}{ }^{a}(\mu)$ | $I_{t}{ }^{\text {b }}$ ( $\mu$ ) | $I_{t}{ }^{\text {c }}$ ( $\mu$ ) | $I_{c}{ }^{a}(\mu)$ | $I_{c}{ }^{\text {b }}(\mu)$ | $I_{c}{ }^{c}(\mu)$ | $I_{i}{ }^{a}(\mu)$ | $I_{i}{ }^{\text {b }}$ ( $\mu$ ) | $I_{i}{ }^{c}(\mu)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 \cdot 330$ | $5 \cdot 2443$ | $5 \cdot 24162$ | 5.22997 | $2 \cdot 6690$ | $2 \cdot 66521$ | 2.67299 | 2.5753 | $2 \cdot 57641$ | 2.55697 |
| $0 \cdot 340$ | $5 \cdot 2150$ | $5 \cdot 21192$ | $5 \cdot 19907$ | 2.6122 | $2 \cdot 60743$ | 2.61478 | 2.6028 | $2 \cdot 60449$ | 2.58429 |
| $0 \cdot 350$ | $5 \cdot 1885$ | 5.18510 | $5 \cdot 17100$ | 2.5581 | $2 \cdot 55258$ | 2.55946 | $2 \cdot 6304$ | $2 \cdot 63251$ | $2 \cdot 61154$ |
| 0.360 | $5 \cdot 1643$ | 5.16053 | $5 \cdot 14518$ | $2 \cdot 5061$ | $2 \cdot 50004$ | 2.50645 | 2.6581 | 2.66049 | 2.63873 |
| $0 \cdot 370$ | $5 \cdot 1418$ | 5.13772 | $5 \cdot 12113$ | $2 \cdot 4558$ | $2 \cdot 44930$ | 2.45525 | 2.6859 | 2.68842 | 2.66588 |
| 0.380 | $5 \cdot 1205$ | 5.11624 | 5.09844 | $2 \cdot 4068$ | $2 \cdot 39995$ | 2.40545 | 2.7137 | 2.71630 | 2.69298 |
| 0.390 | $5 \cdot 1003$ | 5.09576 | 5.07676 | 2.3588 | $2 \cdot 35166$ | 2.35674 | 2.7415 | 2.74411 | 2.72002 |
| $0 \cdot 400$ | 5.0807 | 5.07600 | 5.05585 | 2.3115 | $2 \cdot 30417$ | $2 \cdot 30886$ | 2.7692 | 2.77183 | 2.74699 |
| $0 \cdot 410$ | 5.0616 | 5.05673 | 5.03547 | $2 \cdot 2648$ | $2 \cdot 25728$ | $2 \cdot 26161$ | 2.7968 | 2.79945 | 2.77385 |
| 0.420 | 5.0428 | 5.03777 | 5.01545 | $2 \cdot 2184$ | $2 \cdot 21084$ | 2.21485 | 2.8243 | 2.82693 | 2.80060 |
| 0.430 | 5.0241 | $5 \cdot 01900$ | 4.99566 | $2 \cdot 1724$ | $2 \cdot 16474$ | 2.16846 | 2.8517 | 2.85426 | 2.82721 |
| 0.440 | 5.0055 | 5.00031 | 4.97601 | $2 \cdot 1266$ | 2.11889 | 2.12236 | 2.8789 | 2.88141 | 2.85365 |
| 0.450 | 4.9868 | 4.98162 | 4.95641 | 2.0810 | 2.07326 | 2.07650 | 2.9058 | $2 \cdot 90836$ | 2.87991 |
| $0 \cdot 460$ | 4.9681 | 4.96289 | 4.93682 | 2.0356 | 2.02781 | 2.03085 | 2.9326 | 2.93509 | 2.90596 |
| $0 \cdot 470$ | 4.9494 | 4.94409 | 4.91720 | 1.9903 | 1.98253 | 1.98541 | 2.9590 | $2 \cdot 96156$ | 2.93179 |
| $0 \cdot 480$ | 4.9305 | 4.92519 | 4.89753 | 1.9452 | 1.93742 | 1.94017 | 2.9852 | 2.98777 | 2.95736 |
| $0 \cdot 490$ | $4 \cdot 9115$ | 4.90620 | 4.87781 | 1.9003 | 1.89252 | 1.89515 | 3.0112 | 3.01368 | 2.98266 |
| $0 \cdot 500$ | $4 \cdot 8924$ | 4.88712 | 4.85805 | $1 \cdot 8556$ | 1.84783 | 1.85038 | 3.0367 | 3.03929 | 3.00767 |
| 0.510 | $4 \cdot 8732$ | 4.86796 | 4.83825 | 1.8112 | 1.80339 | 1.80587 | 3.0620 | 3.06456 | 3.03238 |
| $0 \cdot 520$ | 4.8539 | 4.84874 | 4.81843 | 1.7670 | 1.75924 | 1.76166 | 3.0869 | 3.08950 | 3.05677 |
| $0 \cdot 530$ | 4.8346 | 4.82949 | $4 \cdot 79862$ | 1.7231 | 1.71542 | 1.71779 | $3 \cdot 1115$ | $3 \cdot 11407$ | 3.08083 |
| $0 \cdot 540$ | 4.8153 | $4 \cdot 81023$ | 4.77883 | 1.6796 | 1.67195 | 1.67430 | $3 \cdot 1357$ | $3 \cdot 13827$ | $3 \cdot 10454$ |
| $0 \cdot 550$ | 4.7960 | $4 \cdot 79099$ | $4 \cdot 75910$ | 1.6365 | 1.62890 | 1.63121 | $3 \cdot 1595$ | $3 \cdot 16209$ | $3 \cdot 12788$ |
| $0 \cdot 560$ | 4.7767 | 4.77179 | 4.73944 | 1.5938 | 1.58629 | 1.58858 | 3.1829 | $3 \cdot 18550$ | $3 \cdot 15086$ |
| $0 \cdot 570$ | 4.7575 | 4.75267 | 4.71990 | $1 \cdot 5516$ | 1.54416 | 1.54644 | 3.2059 | 3.20851 | 3.17345 |
| $0 \cdot 580$ | 4.7384 | 4.73365 | 4.70048 | 1.5100 | 1.50255 | 1.50482 | 3.2285 | 3.23110 | $3 \cdot 19566$ |
| 0.590 | 4.7195 | 4.71476 | 4.68123 | 1.4688 | 1.46149 | 1.46376 | $3 \cdot 2506$ | 3.25327 | 3.21747 |
| $0 \cdot 600$ | $4 \cdot 7007$ | $4 \cdot 69603$ | $4 \cdot 66216$ | 1.4283 | 1.42103 | 1.42329 | $3 \cdot 2724$ | $3 \cdot 27500$ | 3.23837 |
| 0.620 | 4.6636 | $4 \cdot 65913$ | $4 \cdot 62467$ | 1.3491 | 1.34198 | 1.34423 | $3 \cdot 3145$ | 3.31715 | $3 \cdot 28045$ |
| $0 \cdot 640$ | 4.6274 | 4.62312 | 4.58819 | $1 \cdot 2725$ | $1 \cdot 26560$ | 1.26783 | 3.3549 | $3 \cdot 35752$ | 3.32036 |
| $0 \cdot 660$ | $4 \cdot 5922$ | $4 \cdot 58816$ | 4.55286 | 1-1987 | $1 \cdot 19207$ | 1.19427 | 3.3935 | 3.39609 | 3.35858 |
| $0 \cdot 680$ | $4 \cdot 5583$ | $4 \cdot 55436$ | 4.51879 | $1 \cdot 1279$ | $1 \cdot 12151$ | $1 \cdot 12367$ | 3.4303 | 3.43286 | 3.39512 |
| 0.700 | $4 \cdot 5255$ | $4 \cdot 52182$ | 4.48608 | 1.0602 | 1.05399 | 1.05610 | 3.4654 | 3.46783 | 3.42997 |
| 0.720 | 4.4941 | 4.49060 | 4.45478 | 0.9955 | 0.98956 | 0.99162 | 3.4986 | $3 \cdot 50105$ | 3.46316 |
| 0.740 | $4 \cdot 4641$ | $4 \cdot 46076$ | $4 \cdot 42495$ | 0.9339 | 0.92823 | 0.93023 | 3.5302 | 3.53252 | $3 \cdot 49472$ |
| 0.760 | 4.4354 | $4 \cdot 43230$ | 4.39659 | 0.8754 | $0 \cdot 87000$ | $0 \cdot 87192$ | $3 \cdot 5600$ | $3 \cdot 56230$ | $3 \cdot 52467$ |
| 0.780 | 4-4082 | 4-40524 | $4 \cdot 36972$ | 0.8199 | 0.81481 | 0.81666 | 3.5883 | $3 \cdot 59043$ | $3 \cdot 55307$ |
| 0.800 | $4 \cdot 3824$ | $4 \cdot 37958$ | $4 \cdot 34432$ | 0.7675 | 0.76262 | 0.76438 | 3.6149 | $3 \cdot 61696$ | 3.57994 |
| 0.820 | 4.3579 | $4 \cdot 35529$ | $4 \cdot 32037$ | 07179 | 0.71334 | 0.71502 | 3.6400 | 3.64195 | 3.60536 |
| 0.840 | $4 \cdot 3348$ | $4 \cdot 33235$ | 4.29784 | 0.6712 | $0 \cdot 66688$ | 0.66848 | 3.6636 | $3 \cdot 66547$ | $3 \cdot 62936$ |
| 0.860 | $4 \cdot 3130$ | $4 \cdot 31071$ | $4 \cdot 27667$ | $0 \cdot 6272$ | 0.62316 | 0.62467 | 3.6858 | 3.68756 | 3.65201 |
| 0.880 | $4 \cdot 2925$ | $4 \cdot 29034$ | $4 \cdot 25683$ | 0.5859 | 0.58205 | 0.58348 | 3.7066 | 3.70829 | 3.67335 |
| 0.900 | $4 \cdot 2732$ | $4 \cdot 27119$ | 4.23827 | $0 \cdot 5471$ | 0.54346 | 0.54481 | 3.7261 | 3.72774 | 3.69346 |
| 0.920 | $4 \cdot 2551$ | $4 \cdot 25321$ | $4 \cdot 22091$ | 0.5106 | 0.50726 | $0 \cdot 50853$ | 3.7444 | 3.74596 | 3.71238 |
| 0.940 | 4.2381 | $4 \cdot 23635$ | $4 \cdot 20472$ | $0 \cdot 4765$ | 0.47334 | $0 \cdot 47454$ | 3.7616 | 3.76301 | 3.73018 |
| 0.960 | 4.2222 | $4 \cdot 22055$ | 4.18962 | $0 \cdot 4446$ | $0 \cdot 44159$ | $0 \cdot 44272$ | 3.7776 | 3.77896 | 3.74690 |
| 0.980 | $4 \cdot 2073$ | 4-20575 | $4 \cdot 17557$ | $0 \cdot 4147$ | 0.41189 | 0.41295 | 3.7926 | 3.79387 | 3.76261 |
| 1.000 | $4 \cdot 1933$ | $4 \cdot 19192$ | $4 \cdot 16250$ | $0 \cdot 3867$ | $0 \cdot 38412$ | 0.38513 | 3.8066 | 3.80780 | 3.77737 |
| $1 \cdot 100$ | $4 \cdot 1363$ | 4.13531 | 4.10991 | $0 \cdot 2725$ | $0 \cdot 27067$ | $0 \cdot 27142$ | $3 \cdot 8638$ | 3.86465 | $3 \cdot 83849$ |
| 1.200 | 4.0961 | 4.09542 | 4.07407 | $0 \cdot 1921$ | $0 \cdot 19082$ | $0 \cdot 19139$ | 3.9040 | 3.90460 | $3 \cdot 88267$ |
| 1.300 | 4.0680 | 4.06748 | 4.04988 | $0 \cdot 1358$ | $0 \cdot 13493$ | $0 \cdot 13539$ | 3.9321 | 3.93255 | $3 \cdot 91449$ |
| $1 \cdot 400$ | 4.0483 | 4.04795 | 4.03364 | 0.0965 | 0.09588 | 0.09624 | 3.9518 | 3.95207 | 3.93741 |
| 1.500 | $4 \cdot 0345$ | 4.03428 | 4.02276 | 0.0690 | 0.06854 | 0.06882 | 3.9655 | 3.96574 | 3.95394 |
| $1 \cdot 600$ | $4 \cdot 0248$ | 4.02467 | 4.01545 | $0 \cdot 0497$ | 0.04933 | 0.04956 | 3.9752 | 3.97534 | 3.96590 |
| 1.700 | 4.0180 | 4.01788 | 4.01054 | $0 \cdot 0360$ | 0.03576 | 0.03594 | 3.9820 | $3 \cdot 98212$ | 3.97459 |
| 1.800 | 4.0132 | 4.01306 | 4.00722 | $0 \cdot 0263$ | 0.02612 | 0.02627 | $3 \cdot 9869$ | 3.98694 | 3.98095 |
| 1.900 | $4 \cdot 0097$ | 4.00962 | 4.00496 | 0.0194 | 0.01923 | 0.01934 | 3.9903 | $3 \cdot 99039$ | $3 \cdot 98562$ |
| 2.000 | $4 \cdot 0072$ | 4.00713 | 4.00342 | 0.0144 | 0.01427 | 0.01436 | 3.9928 | 3.99287 | 3.98907 |
| $2 \cdot 100$ | 4.0054 | 4.00533 | 4.00237 | 0.0107 | 0.01066 | 0.01073 | 3.9946 | $3 \cdot 99467$ | 3.99164 |
| $2 \cdot 200$ | $4 \cdot 0040$ | 4.00402 | 4.00165 | $0 \cdot 0081$ | 0.00803 | 0.00809 | 3.9960 | $3 \cdot 99599$ | 3.99356 |
| $2 \cdot 300$ | $4 \cdot 0031$ | 4.00305 | 4.00115 | 0.0061 | 0.00609 | 0.00614 | 3.9969 | 3.99695 | 3.99501 |
| $2 \cdot 400$ | $4 \cdot 0023$ | 4.00233 | 4.00080 | 0.0047 | 0.00466 | 0.00469 | 3.9977 | 3.99767 | $3 \cdot 99611$ |
| $2 \cdot 500$ | $4 \cdot 0018$ | 4.00179 | 4.00056 | 0.0036 | 0.00358 | 0.00361 | 3.9982 | 3.99821 | 3.99695 |
| $2 \cdot 600$ | $4 \cdot 0014$ | 4.00139 | 4.00039 | 0.0028 | 0.00277 | 0.00280 | 3.9986 | 3.99861 | 3.99760 |
| 2.700 | $4 \cdot 0011$ | 4.00108 | 4.00028 | $0 \cdot 0022$ | 0.00216 | 0.00218 | 3.9989 | 3.99892 | 3.99810 |
| $2 \cdot 800$ | 4.0009 | 4.00085 | 4.00019 | $0 \cdot 0017$ | 0.00170 | 0.00171 | 3.9991 | 3.99915 | 3.99848 |
| $2 \cdot 900$ | $4 \cdot 0007$ | 4.00067 | 4.00014 | $0 \cdot 0013$ | 0.00134 | 0.00135 | 3.9993 | 3.99933 | 3.99879 |
| 3.000 | $4 \cdot 0005$ | $4 \cdot 00053$ | 4.00010 | $0 \cdot 0011$ | 0.00106 | 0.00107 | 3.9995 | 3.99947 | 3.99902 |
| $3 \cdot 100$ | $4 \cdot 0004$ | 4.00042 | 4.00007 | $0 \cdot 0009$ | 0.00085 | 0.00085 | 3.9996 | 3.99958 | 3.99921 |
| 3-200 | 4.0003 | 4.00034 | 4.00005 | $0 \cdot 0007$ | $0 \cdot 00068$ | 0.00069 | 3.9997 | 3.99966 | 3.99936 |


| $c$ | Table 1 (cont. $)$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $K^{*}$ | $I_{t}{ }^{a}(\mu)$ | $I_{t}{ }^{b}(\mu)$ | $I_{t}{ }^{c}(\mu)$ | $I_{c} a(\mu)$ | $I_{c}{ }^{b}(\mu)$ | $I_{c}{ }^{c}(\mu)$ | $I_{i}{ }^{a}(\mu)$ | $I_{i}{ }^{b}(\mu)$ | $I_{i}^{c}(\mu)$ |
| 3.300 | 4.0003 | 4.00027 | 4.00003 | 0.0006 | 0.0005 | 0.00055 | 3.9997 | 3.99973 | 3.99948 |
| 3.400 | 4.0002 | 4.00022 | 4.00002 | 0.0004 | 0.00044 | 0.00045 | 3.9998 | 3.99978 | 3.99957 |
| 3.500 | 4.0002 | 4.00018 | 4.00002 | 0.0004 | 0.00036 | 0.00036 | 3.9998 | 3.99982 | 3.99965 |
| 3.600 | 4.0001 | 4.00015 | 4.00001 | 0.0003 | 0.00030 | 0.00030 | 3.9999 | 3.99985 | 3.99971 |
| 3.700 | 4.0001 | 4.00012 | 4.00001 | 0.0002 | 0.00024 | 0.00025 | 3.9999 | 3.99988 | 3.99976 |
| 3.800 | 4.0001 | 4.00010 | 4.00001 | 0.0002 | 0.00020 | 0.00020 | 3.9999 | 3.99990 | 3.99980 |
| 3.900 | 4.0001 | 4.00008 | 4.00000 | 0.0002 | 0.00017 | 0.00017 | 3.9999 | 3.99992 | 3.99984 |
| 4.000 | 4.0001 | 4.00007 | 4.00000 | 0.0001 | 0.00014 | 0.00014 | 3.9999 | 3.99993 | 3.99986 |

* $K=\sin (\omega / 2) / \lambda\left(\AA^{-1}\right) ; \mu=4 \pi K$.
(a) Calculated from the analytical HF wavefunction of Clementi (1965).
(b) Calculated from the analytical two-configuration wavefunction of Watson (1961).
(c) Calculated from the 55 term CI wavefunction of A. W. Weiss (Weiss, 1961) via the NSO and NSG analysis of Barnett (1965).
each $f_{i j}$ appearing in ( $3 a$ ) and (3b) involves a double summation over the STO basis rather than single STO's $\varphi_{i}, \varphi_{j}$ as is the case with the definition (24e) of $I$.
Barnett, Linderberg \& Shull's (1965) 1-matrix analysis of Weiss's (1961) CI Be wavefunction involves 17 NSO's of $s$-, $p$-, $d$ - and $f$-type symmetry. Each NSO in turn is expanded over a STO basis of the proper symmetry. The sum of the 1 -matrix eigenvalues is 4.0 to six-figure accuracy and we therefore find that $I_{c}(0) / I_{\mathrm{cl}}=16$, a result in agreement with the general observations of $\S 2 B$ of I. A straightforward evaluation of (14-I) yields the CI values for $I_{c}(\mu) / I_{\text {cl }}$ when $\omega \neq 0$.
Relative to the 1 -matrix, the Weiss 2 -matrix is rather complex since it contains a total of 185 non-zero eigenvalues. However, only the first 50 NSG (ordered in decreasing magnitude of their occupation numbers) have eigenvalues greater than $1 \times 10^{-5}$ and the sum of these is 5.99987 . Neglect of the remaining NSG (Barnett (1965) only lists $g_{1}-g_{50}$ and $g_{59}-g_{62}$ in his tabulation) can introduce an error no greater than $2 \times 10^{-3} \%$ into the CI $I_{t}(\mu)$ values. This error estimate is based on the observation that the sum of the eigenvalues for the complete 2 -matrix expansion must be exactly $\binom{4}{2}=6$ with the normalization employed.
The 50 NSG used in the present computation of correlated $I_{t}(\mu)$ values are of ${ }^{1} S,{ }^{3} S,{ }^{1} P,{ }^{3} P,{ }^{1} D$ or ${ }^{3} D$ symmetry.* The NSG in turn are expanded in a sum involving two electron configurations built from STO's. Each configuration is an eigenfunction $\dagger$ of the spin and angular momentum operators $\hat{S}^{2}, \hat{S}_{z}, \hat{L}^{2}, \hat{L}_{z}$. For instance a typical ${ }^{1} S$ NSG has the expansion

$$
\begin{equation*}
g_{i}(1,2)=\sum_{t} D_{(t)}\left(\mathbf{r}_{1}, s_{1} ; \mathbf{r}_{2}, s_{2}\right) C_{t j} \quad\left(t=t_{1}, t_{2}\right) \tag{5a}
\end{equation*}
$$

* In $\S 2 C$ of I it was mentioned that only the spatially symmetric and antisymmetric NSG components were needed to evaluate the $I_{t}(\mu)$ expression, regardless of the $M$ and $S$ values of the atomic state. For singlet states such as we are examining here, the NSG are of either pure singlet or triplet character, and are equal to the natural geminals ( NG ) multiplied by an appropriate 2 -particle spin function.
$\dagger$ The configurations listed by Barnett \& Shull (1967) are defined only as to spin state. They must be projected in order to obtain the proper $L$-state (G. P. Barnett, private communication).
where the $D_{(t)}$ notation indicates a configuration constructed from Slater type orbitals (STO) $\varphi_{t_{1}}(\mathbf{r}, s)$, $\varphi_{t_{2}}(\mathbf{r}, s)\left[c f\right.$. the notation of (21-I)]. Thus a ${ }^{1} S$ geminal can involve configurations of the form ( $n p, m p$ ), ( $n d, m d$ ), ( $n s, m s$ ) and so forth. The $s, p, d, \ldots$ notation again indicates the symmetry species (angular momentum quantum number $l$ ) of the single STO while $n, m, \ldots$ indicates its principal quantum number. In order to obtain ${ }^{1} S$ states from such configurations one can apply projection operator techniques (Fieschi \& Löwdin, 1957; Calais \& Linderberg, 1965). The ${ }^{1} S$ component of say a ( $3 d, 3 d$ ) configuration can therefore be written as

$$
\begin{align*}
& (3 d, 3 d)_{1 s}=1 / V 5\left\{\left[3 d_{+2} \alpha(1) 3 d_{-2} \beta(2)\right]\right. \\
& +\left[3 d_{-2} \alpha(1) 3 d_{+2} \beta(2)\right]+\left[3 d_{0} \alpha(1) 3 d_{0} \beta(2)\right] \\
& \left.-\left[3 d_{-1} \alpha(1) 3 d_{+1} \beta(2)\right]-\left[3 d_{+1} \alpha(1) 3 d_{-1} \beta(2)\right]\right\} \tag{5b}
\end{align*}
$$

where the notation is that used in (2b). As a specific example of 'diagonal' matrix elements [see (23-I)] encountered in the evaluation of $I_{t}(\mu)$ we find that

$$
\begin{align*}
& \left\langle(3 d, 3 d)_{1 s} \exp \left\{i \boldsymbol{i} \cdot \mathbf{r}_{12}\right\} \mid(3 d, 3 d)_{1 s}\right\rangle \\
& \quad=\left|f_{3 d(0) 3 d}\right| 2+\frac{10}{7}\left|f_{3 d(2) 3 d}\right|^{2}+\frac{18}{7}\left|f_{3 d(4) 3 d}\right|^{2} \tag{5c}
\end{align*}
$$

where the $f$ 's are exactly those defined by the expansion (24e) of I. Thus correlated $I_{t}(\mu)$ values for $\omega \neq 0$ were obtained by evaluating (23-I) with the truncated NSG expansion, subject to the constraint conditions ( $29 a$, $b$, and $c$ ) of I .
The accuracy of the present calculations was checked by a sum-rule procedure. The one-electron contributions to the potential energy of the scatterer can be obtained (Silverman \& Obata, 1963) from the coherent X-ray scattering factor $F(\mu)$ values with the sum rule

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{F}(\mu) \mathrm{d} \mu=\frac{\pi}{2} \cdot\left\langle\frac{1}{r}\right\rangle \tag{6}
\end{equation*}
$$

while the two-particle contributions can be obtained (Tavard \& Roux, 1965) from

$$
\begin{equation*}
\int_{0}^{\infty}\left[\frac{I_{t}(\mu)}{I_{\mathrm{cl}}}-N\right] \mathrm{d} \mu=\pi\left\langle\frac{1}{r_{12}}\right\rangle . \tag{7}
\end{equation*}
$$

Equations (6) and (7) were integrated numerically* using a standard Simpson's rule procedure. The sum rule values of $\langle 1 / r\rangle$ and $\left\langle 1 / r_{12}\right\rangle$ are presented in Table 2 along with the values computed directly from the HF and Watson functions and from the NSO and truncated NSG expansions.

Table 2. Expectation values of $\sum_{i} \frac{1}{r_{i}}$ and $\frac{1}{2} \sum_{i, j}^{\prime} \frac{1}{r_{i j}}$ for the ${ }^{1} S$ state of atomic Be

|  | $\mathrm{HF}^{(a)}$ | Watson $^{(0)}$ | Weiss ${ }^{(c)}$ |
| :--- | :--- | :--- | :--- |
| $\left\langle\frac{1}{r}\right\rangle$ sum rule | 8.4087 | 8.4178 | 8.4247 |
| $\left\langle\frac{1}{r}\right\rangle$ calculated | 8.4089 | 8.4179 | 8.4246 |
| $\left\langle\frac{1}{r_{12}}\right\rangle$ sum rule | 4.4892 | 4.4625 | 4.3803 |
| $\left\langle\frac{1}{r_{12}}\right\rangle$ calculated | 4.4896 | 4.4626 | 4.3803 |

(a) Computed from the analytical HF function of Clementi (1965).
(b) Computed from the two-configuration function of Watson (1961).
(c) Computed from the NSO and NSG analysis (Barnett, 1965) of A. W. Weiss (1961) CI function.

## 3. Discussion

No attempt is made to discuss the correlation problem per se since we are only interested in examining how the values of the total, coherent and incoherent scattered X-ray intensities are affected by electron correlation. Since the 2-matrix $\Gamma^{(2)}$ is antisymmetric [see (7c) of I],

$$
\Gamma^{(2)}\left(X_{1}, X_{2} \mid X_{1}^{\prime} X_{2}^{\prime}\right)=0 \text { if } X_{1}=X_{2} \text { or if } X_{1}^{\prime}=X_{2}^{\prime},
$$

where $X_{i}=\left(\mathbf{r}_{i}, s_{i}\right)$ denotes the combined space-spin coordinate. Thus antisymmetry leads to an exchange correlation known as the 'Fermi hole' (Löwdin, 1959) which tends to keep electrons of parallel spin apart.

Let us now consider the case $\mathbf{r}_{1} \rightarrow \mathbf{r}_{2}$. From the repulsive two-electron term $H_{12}=e^{2} / r_{12}$ in the Hamiltonian $H$ it is clear that $H_{12}$ becomes increasingly large as $r_{12}$ approaches zero. This mutual electronelectron repulsion introduces a 'correlation' or 'Coulomb hole' between the various electron pairs. For electrons of like spin, the correlation hole is partially compensated for by the Fermi hole. The Be HF function takes into account the indistinguishability of electrons (i.e. it is antisymmetric), but it does not yield any description of the correlation or Coulomb holes since

[^1]there is no restriction on placing two electrons of opposite spin in the same (spatial) orbital.
If the charge distribution is spherically symmetric or if one averages over random orientations of a nonspherical atom, the effect of neglecting spatial correlation can be viewed in terms of the radial electronelectron distribution function,* defined in the notation of Bartell \& Gavin (1964) as $P\left(r_{12}\right)$. As shown by Bartell \& Gavin (1964, 1965), $I_{t}(\mu)$ is then related $\dagger$ to the Fourier sine transform of $P\left(r_{12}\right) / r_{12}$. It is expected that the introduction of spatial correlation via the Coulomb holes will cause a correlated $P\left(r_{12}\right)$ distribution to be more diffuse than its HF counterpart. Thus correlated $I_{t}(\mu)$ values should be somewhat smaller in magnitude (for a given value of $\mu$ ) than HF values provided that $P^{\mathrm{HF}}\left(r_{12}\right)$ and $P^{\operatorname{corr}}\left(r_{12}\right)$ are of the same general shape. In any event IPM (e.g. HF) $I_{t}(\mu)$ values are expected to be somewhat in error since $P\left(r_{12}\right)$ determines $I_{t}(\mu)$ and vice versa.
Gavin \& Bartell (1966) have proposed a method for estimating the magnitude of correlation effects on $I_{t}(\mu)$ values. According to Gavin \& Bartell (1966), the total distribution function $P\left(r_{12}\right)$ can be defined as a sum of pair distribution functions $P_{k l}\left(r_{12}\right)$, one $P_{k l}$ for each pair ( $k, l$ ) of spin orbitals used in the construction of the wavefunction $\Psi_{g}$. As noted by Bartell \& Gavin (1966) and others, the correlation energy $E_{\text {corr }}=E_{\text {exact }}$ $-E_{\mathrm{HF}}$, can be expressed as
$$
E_{\text {corr }}=\frac{-Z}{2} \int_{0}^{\infty} \frac{\Delta D(r)}{r} \mathrm{~d} r+\frac{1}{2} \int_{0}^{\infty} \frac{\Delta P\left(r_{12}\right)}{r_{12}} \mathrm{~d} r_{12},
$$
where
$$
\Delta D(r)=D_{\text {exact }}(r)-D_{\mathrm{HF}}(r)
$$
and
$$
\Delta P\left(r_{12}\right)=P_{\text {exact }}\left(r_{12}\right)-P_{\mathrm{HF}}\left(r_{12}\right) .
$$

In the notation of Bartell \& Gavin, $D(r)$ denotes the radial electron-nuclear distribution. With the assumption that $\Delta D(r) \simeq 0$, these authors obtain $\Delta P_{k l}\left(r_{12}\right)$ contributions from known pair correlation energies $E_{k l}$ and

[^2]by the relation
$$
P\left(r_{12}\right) \mathrm{d} r_{12}=\iint P^{(2)}\left(\mathbf{r}_{1}, \mathbf{r}_{2} \mid \mathbf{r}_{1}, \mathbf{r}_{2}\right) \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2}
$$
where the integration is carried out over all coordinates except $r_{12}$. In the present normalization
$$
\int_{0}^{\infty} P\left(r_{12}\right) \mathrm{d} r_{12}=\binom{N}{2},
$$
the number of distinct electrons pairs. The Coulomb hole has been formally defined for two-electron systems by Coulson \& Neilson (1961) which he generalize here as $P_{\text {exact }}\left(r_{12}\right)-P_{\mathrm{HF}}\left(r_{12}\right)$.
$\dagger$ The connection between the Bartell-Gavin (1964, 1965) formulation of $I_{t}(\mu)$ for X-ray scattering from non-interacting gas atoms and the density matrix formulation derived in I is established in the Appendix of this paper.
then evaluate* $\Delta I_{t}(\mu)=I_{t}{ }^{\operatorname{exact}}(\mu)-I_{t} \mathrm{HF}(\mu)$ from the relation
$$
\Delta I_{t}(\mu) / I_{\mathrm{cl}}=\sum_{k} \sum_{l \neq k} \int_{0}^{\infty} \Delta P_{k l}\left(r_{12}\right) \frac{\sin \left(\mu r_{12}\right)}{\mu r_{12}} \mathrm{~d} r_{12} .
$$

Although Watson's (1961) function and the truncated NSG expansion of the Weiss 2-matrix do not exactly satisfy the virial theorem $(\langle V\rangle\langle\langle T\rangle=-2.00163$ and $-2 \cdot 00022$, respectively), the present computations clearly indicate that the correlation energy cannot be accounted for solely on the basis of an improved (relative to HF ) radial electron-electron distribution function as assumed by Gavin \& Bartell (1966). One must consider changes in the radial electron-nuclear distribution $\dagger D_{0}(r)$. This fact is reflected in the expectation values $\langle 1 / r\rangle$ listed in Table 2 and in curves I and II of Fig. 2. Since the $\Delta I_{c}(\mu)$ values are roughly twofold larger in magnitude than the $\Delta I_{t}(\mu)$ values in the range $0.0-0.3(\AA)^{-1}$, the assumption that $D_{0}^{\mathrm{HF}}(r) \simeq D_{0}^{\text {exact }}(r)$ is obviously not justified, and the accuracy of the GavinBartell (1966) scheme for estimating $\Delta I_{t}(\mu)$ values is also questionable. For example, Gavin \& Bartell (1966) plotted a curve of estimated $\Delta I_{t}(\mu)$ values for the ${ }^{1} S$ ground state of Be (Fig. 3 of their paper) versus the scattering variable $\mu$. Their curve disagrees somewhat with curve I of Fig. 1 in that the positions of their maxima are shifted to slightly higher $\sin (\omega / 2) / \lambda$ values while their estimated $L$-shell peaking is roughly $25 \%$ higher than that indicated by the present calculations.

Gavin \& Bartell (1966) also computed $I_{t}(\mu)$ values from the CI wavefunction of Boys (1950) and from the analytical HF function of Roothaan, Sachs \& Weiss (1960). Although the Boys function accounts for $52 \%$ of the correlation energy, these authors found negative values for $\Delta I_{t}(\mu)$ (Fig. 3 of Bartell \& Gavin, 1966). The implication of this result is that the Boys $P\left(r_{12}\right)$ distribution contracts relative to its HF counterpart over a certain range of $r_{12}$ values (roughly corresponding to the $K$-shell region) indicating that this function does not yield a proper description of correlation effects.

In addition to providing 'accurate' X-ray scattering factors and intensities, the present computations yield qualitative information about the correlated electronelectron and electron-nuclear radial distributions

[^3]$P\left(r_{12}\right)$ and $D_{0}(r)$. It is observed from Fig. 2 that the $K$-shell component of the correlated $D_{0}(r)$ distribution expands slightly towards larger $r$ values while the $L$-shell component contracts considerably towards smaller $r$ values, relative to the HF distribution. While the $L$-shell contraction is expected on the basis of an increased effective nuclear charge for the correlated atom, the slight $K$-shell expansion cannot be explained in this manner.

In order to determine whether or not these shifts in $D_{0}(r)$ are due to 'pure correlation' effects (Larsson \& Smith, 1969; Brown, Larsson \& Smith, 1969) or to 'one-electron' effects (i.e. the one-electron contributions $\hat{f}_{i}$ discussed by Sinanoğlu \& Tuan, 1963), $I_{c}(\mu)$ values were computed with the 'best density' determinant* constructed from the Weiss 1-matrix. The differences $\Delta I_{c}(\mu)$ between HF and correlated and between 'best density' and correlated are shown in Fig. 3.

An expansion of the exact wavefunction $\Psi_{g}$ in terms of the 'best overlap' orbitals* has the property that it eliminates all singly-excited configurations, thereby allowing an exact assessment of 'one-electron' effects with respect to the expectation values of one-electron operators. From curve I of Fig. 2 it is evident that the $L$-shell contraction of the correlated $D_{0}(r)$ distribution can be explained almost entirely on the basis of these effects. Although we base our conclusion on results obtained with the 'best-density' rather than the 'bestoverlap' IPM, these two models (while not identical) are similar enough to account for the fluctuations in the correlated $D_{0}(r)$ distribution observed here.

From Fig. 1 we can deduce that the maxima of the correlated $P\left(r_{12}\right)$ distribution are shifted towards higher $r_{12}$ values, in agreement with the argument that the 'Coulomb holes' tend to make it more diffuse than the HF distribution. With respect to the Watson $I_{t}(\mu)$ values, we see that the $L$-shell component of $P\left(r_{12}\right)$ shifts to higher $r_{12}$ values while the $K$-shell component remains almost stationary with respect to HF. This behaviour is to be expected since the Watson function

* A glossary of various IPM's is presented at the end of this paper.


Fig. 3. Intensity differences for coherent scattering for the ${ }^{1} S$ state of the Be atom.
was designed to take into account the near-degeneracy in the $L$-shell.
The largest differences between HF and CI values are observed for the incoherent intensity. Although the largest absolute deviation in $I_{i}(\mu)$ is observed at $0 \cdot 105(\AA)^{-1}$, relative differences as large as $40-50 \%$ occur in the range $0 \cdot 0-0 \cdot 020(\AA)^{-1}$. At these values of $\sin (\omega / 2) / \lambda$ the $I_{i}(\mu)$ contributions to $I_{t}(\mu)$ are indeed small relative to the coherent component $I_{c}(\mu)$, but any experimentalist making corrections for incoherent contributions to $I_{t}$ must be aware of the fact that incoherent intensity values obtained from HF functions may be seriously in error at small values of the scattering variable.

## 4. Summary

Correlated values for the total, coherent and incoherent intensities of X-ray radiation scattered by atomic systems can be obtained from the general density matrix formalism presented in I. Although values of the coherent scattering factor $F(\mu)$ for the ${ }^{1} S$ ground state of atomic Be are not presented here,* they are easily obtained from the $I_{c}(\mu)$ values listed in Table 1. The computation of $I_{c}(\mu)$ values from the NSO expansion of the Weiss 1 -matrix is much simpler than computing matrix elements of the scattering operator $e^{i \mu . r}$ between the various determinants of the CI function. The latter procedure requires the evaluation of overlap integrals in addition to the matrix elements, whereas the NSO's are constructed mutually orthonormal.

The appreciable $L$-shell contraction of the correlated $D_{0}(r)$ distribution can be explained by 'one-electron' effects, although a computation of $I_{c}(\mu)$ values from the exact 'best-overlap' determinant will be required to unequivocally settle this point. Our $I_{c}(\mu)$ computations have clearly demonstrated that $D_{0} \mathrm{HF}(r)$ $\simeq D_{0}{ }^{\operatorname{corr}}(r)$ is not a valid assumption. Conversely, the assumption that $F_{\mathrm{HF}}(\mu) \simeq F_{\mathrm{corr}}(\mu)$ is not valid, as the accuracy of these values is clearly a function of the scattering variable $\mu$.

Finally, we wish to emphasize the importance and general utility of the sum rules (6) and (7) which were used to check the present calculations. Determinations of $\langle 1 / r\rangle$ and $\left\langle 1 / r_{12}\right\rangle$ by direct integration of experimental gas scattering intensity curves should yield reasonably accurate experimental values for the 1 -and 2-electrons contributions to the correlation energy of

[^4]gas atoms. In practise the sum rule procedure for obtaining energies is simpler than the Bartell-Gavin (1964) method, wherein one first Fourier transforms the intensity data to obtain experimental $D_{0}(r) / r$ and $P\left(r_{12}\right) / r_{12}$ curves and then integrates these curves to obtain total energies via the virial theorem.

## APPENDIX

The expression for the total intensity of scattered X-ray radiation was defined [see ( $20-\mathrm{I}$ )] by the relation

$$
\begin{align*}
I_{t}(\boldsymbol{\mu}) / I_{\mathrm{cl}}=N+2 \iint P^{(2)} & \left(\mathbf{r}_{1}, \mathbf{r}_{2} \mid \mathbf{r}_{1}, \mathbf{r}_{2}\right) \\
& \times \exp \left\{i \boldsymbol{\mu} \cdot \mathbf{r}_{12}\right\} \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \tag{A1}
\end{align*}
$$

where $P^{(2)}$ denotes the combination $P^{(2)}=3 P_{t}+P_{s}$ of triplet $P_{t}$ and singlet $P_{s}$ spatial 2-matrices. If the electron distribution is spherically symmetric or if one averages over all orientations $\alpha, \beta$ of the scattering vector $\mathbf{S}$ for a fixed value of $\sin (\omega / 2) / \lambda$ (this is equivalent to averaging over random orientations of a nonspherical atom); insertion of the plane wave expansion for $\exp \left\{i \boldsymbol{\mu} \cdot \mathbf{r}_{12}\right\}$ into (A1) and integration over $\alpha, \beta$ yields

$$
\begin{align*}
\left\langle\frac{I_{t}(\boldsymbol{\mu})}{I_{\mathrm{cl}}}\right\rangle & \left.=\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\left(I_{t}(\mu)\right.}{I_{\mathrm{cl}}}-N\right) \sin \alpha \mathrm{d} \alpha \mathrm{~d} \beta \\
& =2 \iint_{0} P^{(2)}\left(\mathbf{r}_{1}, \mathbf{r}_{2} \mid \mathbf{r}_{1}, \mathbf{r}_{2}\right) j_{0}\left(\mu r_{12}\right) \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \\
& =2 \int_{0}^{\infty} P_{0}\left(r_{12}\right) \frac{\sin \mu r_{12}}{\mu r_{12}} \mathrm{~d} r_{12}, \tag{A2}
\end{align*}
$$

where $P_{0}\left(r_{12}\right)$, the totally symmetric component (under spatial rotations) of the distribution $P\left(\mathbf{r}_{12}\right)$, is obtained from a general $P^{(2)}\left(\mathbf{r}_{1}, \mathbf{r}_{2} \mid \mathbf{r}_{1}, \mathbf{r}_{2}\right)$ by the relation

$$
\begin{equation*}
P_{0}\left(r_{12}\right) \mathrm{d} r_{12}=\iint P^{(2)}\left(\mathbf{r}_{1}, \mathbf{r}_{2} \mid \mathbf{r}_{1}, \mathbf{r}_{2}\right) \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2}, \tag{A3}
\end{equation*}
$$

where the integrations are carried out over all coordinates but $\mathbf{r}_{12}$.
The connection with the Bartell-Gavin (1964) expression for $I_{t}(\mu)$ and the 2-matrix formulation of $I$ is established by noting that the Bartell-Gavin (1964) radial electron-electron distribution function $P\left(r_{12}\right)$ mentioned in the text above is just that defined by (A3).

If one considers the spherical average $\langle F\rangle$ of the coherent scattering factor $F$, which was defined by (16-I) as

$$
\begin{equation*}
F(\mu, \alpha, \beta)=\int \exp \{i \boldsymbol{\mu} \cdot \mathbf{r}\} \bar{\gamma}(\mathbf{r}) \mathrm{d} \mathbf{r} \tag{A4}
\end{equation*}
$$

one obtains

$$
\begin{equation*}
\langle F(\mu)\rangle=\int_{0}^{\infty} j_{0}(\mu r) D_{0}(r) \mathrm{d} r \tag{A5}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{0}(r)=r^{2} \int_{0}^{2 \pi} \int_{0}^{\pi} \bar{\gamma}(\mathbf{r}) \sin \theta \mathrm{d} \theta \mathrm{~d} \varphi \tag{A6}
\end{equation*}
$$

is the totally symmetric component (under spatial rotations) of a general charge density matrix $\bar{\gamma}(\mathbf{r})$. For a specific orientation of an aspherical gas atom both $I_{t}$ and $F$ obviously depend on the orientation as well as the magnitude of $S$. Thus (A5) and (A2) can be considered as special cases of the general formulae (A4) and (A1) respectively.

## Glossary of independent particle models

Independent particle model (IPM) wavefunctions decribing an atomic state may be constructed according to various criteria as follows:
(1) The HF wavefunction is chosen as the best single determinant approximation to the exact wavefunction $\Psi_{g}$ as determined from the energy variation principle. Thus $\Psi_{\text {HF }}$ yields the best single determinant approximation to the total energy. However, if $\Psi_{\text {HF }}$ is constrained to be an eigenfunction of the spin and angular momentum operators, it cannot in general be represented by a single Slater determinant.
(2) The 'best-overlap' (BO) determinant is constructed to maximize the overlap between itself and the 'exact' or reference wavefunction $\Psi_{g}$. An expansion of $\Psi_{g}$ in terms of BO orbitals (extended in an arbitrary way to form a complete basis set) eliminates all singly excited configurations. Such a model is therefore suitable for assessing the importance of 'one-electron' correlation effects. This model is also known as the 'exact SCF' (Löwdin, 1962) theory and the BO orbitals are often referred to as 'Brueckner' orbitals.
(3) The 'best-density' (BD) determinant is constructed so that its Fock-Dirac density matrix is the best idempotent approximation to the 1 -matrix $\gamma_{\mu_{z}}\left(X_{1} \mid X_{2}\right)$ corresponding to $\Psi_{g}$. It is constructed from the first N (ordered after decreasing magnitude of their occupation numbers) NSO's of $\Psi_{g}$. In general the BO and BD orbitals are not the same (Kutzelnigg \& Smith, 1964).

Other IPM's not specifically mentioned in context with the present work include the 'spin-adapted best density' and 'symmetry-adapted best density' models. These are discussed in the work of Smith \& Kutzelnigg (1968a, b, c) and Kutzelnigg \& Smith (1964) along with the BD and BO models.

The authors wish to thank the National Research Council of Canada and the Principal's Research Fund of Queen's University for their financial support of this work. One of us (RB) also wishes to thank the Ontario Department of University Affairs for a postgraduate fellowship, while (VHS) expresses his appreciation to Professor P.-O. Löwdin for his hospitality in Uppsala where portions of this research were done. A preliminary account of this work appeared as Technical Note 222 (August, 1968) of the Uppsala Quantum

Chemistry Group. We thank the Computing Centre at Queen's University for the use of its facilities.

## References

Barnett, G. P. (1965). Thesis, Indiana University.
Barnett, G. P., Linderberg, J. \& Shull, H. (1965). J. Chem. Phys. 43, 580.
Barnett, G. P. \& Shull, H. (1967). Phys. Rev. 153, 61.
Bartell, L. S. \& Gavin, R. M. (1964). J. Am. Chem. Soc. 86, 3493.
Bartell, L. S. \& Gavin, R. M. (1965). J. Chem. Phys. 43, 856.

Benesch, R. (1967). Thesis, University of Alberta.
Benesch, R. \& Smith, V. H. (1970). Acta Cryst. A26, 579.
Boys, S. F. (1950). Proc. Roy. Soc. A201, 125
Brown, R. E., Larsson, S. \& Smith, V. H. (1969). Technical Note 249, Uppsala Quantum Chemistry Group, Uppsala University, Uppsala, Sweden.
Calais, J.-L. \& Linderberg, J. (1965). Theoret. Chim. Acta, 3, 69.
Clementi, E. (1965). Tables of Atomic Functions. IBM Corporation, San Jose, California.
Coulson, C. A. \& Neilson, A. H. (1961). Proc. Phys. Soc. 78, 831.
Fieschi, R. \& Löwdin, P.-O. (1957). Technical Note 4, Uppsala Quantum Chemistry Group, Uppsala University, Uppsala, Sweden.
Gavin, R. M. \& Bartell, L. S. (1966). J. Chem. Phys. 45, 4700.

Kutzelnigg, W. \& Smith, V. H. (1964). J. Chem. Phys. 41, 896.

Larsson, S. \& Smith, V. H. (1969). Phys. Rev. 178, 137. Layzer, D. (1959). Ann. Phys. (N.Y.) 8, 27.
Linderberg, J. \& Shull, H. (1960). J. Mol. Spectr. 5, 1. Löwdin, P.-O. (1959). Advan. Chem. Phys. 2, 207.
Löwdin, P.-O. (1962). J. Math. Phys. 32, 335.
Møller, C. \& Plesset, M. S. (1934). Phys. Rev. 46, 618.

Nesbet, R. (1965). Advan. Chem. Phys. 9, 321.
Roothaan, C. C. J., Sachs, L. M. \& Weiss, A. W. (1960). Rev. Mod. Phys. 32, 186.
Silverman, J. N. \& Obata, Y. (1963). J. Chem. Phys. 38, 1254.

Sinanoglu, O. \& Tuan, D. F. (1963). J. Chem. Phys. 38, 1740.

Smith, V. H. \& Kutzelnigg, W. (1968a). Arkiv för Fysik 38, 309.
Smith, V. H. \& Kutzelnigg, W. (1968b). Intern. J. Quantum Chem. 2, 534.
Smith, V. H. \& Kutzelnigg, W. (1968c). Intern. J. Quantum Chem. 2, 553.
Tavard, C. \& Roux, M. (1965). C. R. Acad. Sci. Paris, 260, 4933.
Tavard, C., Nicholas, D. \& Roualt, M. (1967). J. Chim. Phys. 39, 540.
Waller, I. \& Hartree, D. R. (1929). Proc. Roy. Soc. A124, 119.
Watson, R. (1961). Ann. Phys. (N.Y.) 13, 250.
Weiss, A. W. (1961). Phys. Rev. 122, 1326.
Weiss, R. J. (1966). X-ray Determination of Electron Distributions. New York: John Wiley.


[^0]:    * See Nesbet (1965) for the extension of this theorem to non-closed shell systems.
    

[^1]:    * The sensitivity of the numerical integrations to the grid spacings $\Delta \mu$ was checked by halving the spacings until the result was insensitive (one part in $10^{6}$ ) to further scale division. Thus more $F(\mu)$ and $I_{t}(\mu)$ values were used in the numerical integrations than those which appear in Table 1, and these can be furnished on request.

[^2]:    * It is noted that $P\left(r_{12}\right)$ may be obtained from a general spin free 2-matrix

    $$
    P^{(2)}\left(\mathbf{r}_{1}, \mathbf{r}_{2} \mid \mathbf{r}_{1}, \mathbf{r}_{2}\right)=P_{s}\left(\mathbf{r}_{1}, \mathbf{r}_{2} \mid \mathbf{r}_{1}, \mathbf{r}_{2}\right)+3 P_{t}\left(\mathbf{r}_{1}, \mathbf{r}_{2} \mid \mathbf{r}_{1}, \mathbf{r}_{2}\right)
    $$

[^3]:    * The Gavin-Bartell (1966) scheme is not rigorously correct since the $\Delta P_{k l}\left(r_{12}\right)$ functions which they obtain from known pair correlation energies $E_{k l}$ are related to the second order transition density matrices $\Gamma_{k l}{ }^{(2)}\left(X_{1}, X_{2} \mid X_{1}, X_{2}\right)$ whereas the $I_{t}(\mu) / I_{c l}$ expression is defined in terms of the ground state wavefunction $\Psi_{g}$, or as has been shown in $I$, in terms of the spin-free 2 -matrix obtained from $\Psi_{g}$. The pair correlation energies $E_{k l}$ are defined as the transition matrix elements, $E_{k l}=$ $\left\langle\Phi_{\mathrm{HF}}\right| H\left|\Phi_{k l}\right\rangle$, where $\Phi_{k l}$ is the sum of all determinants doubly excited with respect to the pair ( $k, l$ ) in the HF determinant $\Phi_{\mathrm{HF}}$. Using intermediate normalization, i.e. $1=$ $\left\langle\Phi_{\mathrm{HF}} \mid \Psi_{\text {exact }}\right\rangle$, the total correlation energy $E_{\text {corr }}$ is defined exactly as the sum of the $E_{k l}$ 's for all possible doubly excited configurations.
    $\dagger$ The function $D_{0}(r)$ is defined in the Appendix.

[^4]:    * R. J. Weiss (1966) has reported correlated $F(\mu)$ values which were calculated directly from the Cl Be atom wavefunction of A. W. Weiss (1961), but there is a slight disagreement with our $I_{c}(\mu)$ values $\left[F^{2}(\mu)=I_{c}(\mu)\right.$ ]. As a check on the numerical accuracy of Barnett's (1965) NSO expansion, $I_{c}(\mu)$ values were also calculated from the truncated NSG expansion of the Weiss 2 -matrix and these values agree with the 1-matrix results. As the truncated NSG expansion yields a total energy within 0.0003 atomic units of the actual Weiss (1961) energy, the NSO and truncated NSG expansions must be of comparable numerical accuracy. Also, the table of $F(\mu)$ values given on p. 187 of Weiss (1966) has its headings interchanged since HF should read 55 configuration interaction and vice versa.

